

 Short-Sighted Probabilistic Planning

Felipe Trevizan

August 2013
CMU-ML-13-109

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Short-Sighted Probabilistic Planning

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer Science,Machine
Learning Department,Pittsurgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Planning is an essential part of intelligent behavior and a ubiquitous task for both humans and rational
agents. One framework for planning in the presence of uncertainty is probabilistic planning in which
actions are described by a probability distribution over their possible outcomes. Probabilistic planning has
been applied to different real-world scenarios such as public health sustainability and robotics; however,
the usage of probabilistic planning in practice is limited due to the poor performance of existing planners.
In this thesis, we introduce a novel approach to effectively solve probabilistic planning problems by
relaxing them into short-sighted problems. A short-sighted problem is a relaxed problem in which the state
space of the original problem is pruned and artificial goals are added to heuristically estimate the cost of
reaching an original goal from the pruned states. Differently from previously proposed relaxations,
short-sighted problems maintain the original structure of actions and no restrictions are imposed in the
maximum number of actions that can be executed. Therefore, the solutions for short-sighted problems take
into consideration all the probabilistic outcomes of actions and their probabilities. In this thesis, we also
study different criteria to generate short-sighted problems, i.e., how to prune the state space, and the
relation between the obtained short-sighted models and previously proposed relaxation approaches. We
present different planning algorithms that use short-sighted problems in order to solve probabilistic
planning problems. These algorithms iteratively generate and execute optimal policies for short-sighted
problems until the goal of the original problem is reached. We also formally analyze the introduced
algorithms, focusing on their optimality guarantees with respect to the original probabilistic problem.
Finally, this thesis contributes a rich empirical comparison between our algorithms and state-of-the-art
probabilistic planners.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

139

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Short-Sighted Probabilistic Planning

Felipe W. Trevizan

August 2013
CMU-ML-13-109

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Manuela M. Veloso, Chair

Emma Brunskill
Reid Simmons

Bart Selman (Cornell University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2013 Felipe W. Trevizan

This research was sponsored by the National Science Foundation under grant numbers CNS0509383, CNS0625518,
and IIS0644225; the US Army Research Office under grant number W911NF0710287; the Pennsylvania Department
of Community and Economic Development; and the Pittsburgh Life Sciences Greenhouse.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: probabilistic planning, short-sighted planning, planning under uncertainty, opti-
mal planning

To my late grandfather Edgard and aunt Léa.

Abstract

Planning is an essential part of intelligent behavior and a ubiquitous task for both humans and
rational agents. One framework for planning in the presence of uncertainty is probabilistic plan-
ning, in which actions are described by a probability distribution over their possible outcomes.
Probabilistic planning has been applied to different real-world scenarios such as public health,
sustainability and robotics; however, the usage of probabilistic planning in practice is limited due
to the poor performance of existing planners.

In this thesis, we introduce a novel approach to effectively solve probabilistic planning prob-
lems by relaxing them into short-sighted problems. A short-sighted problem is a relaxed problem
in which the state space of the original problem is pruned and artificial goals are added to heuris-
tically estimate the cost of reaching an original goal from the pruned states. Differently from
previously proposed relaxations, short-sighted problems maintain the original structure of ac-
tions and no restrictions are imposed in the maximum number of actions that can be executed.
Therefore, the solutions for short-sighted problems take into consideration all the probabilistic
outcomes of actions and their probabilities. In this thesis, we also study different criteria to
generate short-sighted problems, i.e., how to prune the state space, and the relation between the
obtained short-sighted models and previously proposed relaxation approaches.

We present different planning algorithms that use short-sighted problems in order to solve
probabilistic planning problems. These algorithms iteratively generate and execute optimal poli-
cies for short-sighted problems until the goal of the original problem is reached. We also for-
mally analyze the introduced algorithms, focusing on their optimality guarantees with respect to
the original probabilistic problem. Finally, this thesis contributes a rich empirical comparison
between our algorithms and state-of-the-art probabilistic planners.

Acknowledgments

There are many people, to whom I am deeply indebted, and without whom this work would
never have been finished. First and foremost is my advisor, Manuela Veloso. She has provided
invaluable insights, advice, guidance, and support on both my research and career.

I would like to thank my thesis committee members, Emma Brunskill, Reid Simmons and
Bart Selman. Their valuable questions, insights and comments have greatly improved the con-
tent of this work. I would also like to express my gratitude to Professors Leliane Nunes de
Barros, Fabio Cozman, Hector Geffner, Carlos Guestrin and Seth Goldstein for their guidance
and support during my graduate studies.

I am grateful for being part of the CORAL group at CMU. Their feedback on all my prac-
tice talks greatly improved the presentation of my work. I would also like to thank Somchaya
Liemhetcharat, who read this thesis and provided several useful comments and suggestions. I am
also grateful for the administrative support given by Diane Stidle, Christina Contreras, Michelle
Martin and Marilyn Walgora which has helped me focus in my research.

I would like to thank the friends I made along the way and which have been there for me
through the ups and downs of graduate school: Bob Coblentz, Charalampos (Babis) Tsourakakis
and Maria Tsiarli, Chiara Cosentino, Daniel Pickem, Harini Aiyer, Jan Pristavok and Maggie
Hari, Lisa Storey and Kevin Peterson, Matt Schnall, Mladen Kolar and Gorana Smailagic, Neil
Blumen, Polo Chau, Regina Schulte-Ladbeck, Sam Taggard, Stefan Kremser, and Toni Price.

I would also like to thank my friends back in Brazil for their support, encouragement and
friendship: Ana Lygia Monteferrario, Carlos Cardonha, Cesar Augusto, Ednei Reis, Ettore Lig-
orio, Fabio Kacuta, George Silva, Giuliano Araujo, Gordana Manić, Heitor Marcos and Talita
Cordeiro, Kim Samejima, Marcelo Hashimoto, Marcelo and Telma Amador, Maria Manuella
Rocco, Mel Akemi, Paulo Lima, Paulo Salem, Regis Chinen, Ricardo Andrade, Thiago Abdalla,
and William Moreira.

Most of all, I would like to thank my family, especially my parents, Marcos and Rosana, and
my sister, Carolina, for always being supportive and encouraging. Without their boundless love,
this thesis would not have been possible.

Contents

Contents i

List of Figures v

List of Tables vii

List of Algorithms ix

1 Introduction 1
1.1 Thesis Question and Approach . 4
1.2 Contributions . 5
1.3 Guide to the Thesis . 6

2 Background 9
2.1 Stochastic Shortest Path Problem . 9
2.2 Factored Representation . 13
2.3 Relevant Probabilistic Planning Algorithms . 15

2.3.1 Real-Time Dynamic Programming . 15
2.3.2 FF-Replan . 15

2.4 Summary . 17

3 Short-Sighted Probabilistic Planning 19
3.1 Motivation . 19
3.2 Short-Sighted Stochastic Shortest Path Problems 21

3.2.1 Properties . 22
3.3 Short-Sighted Probabilistic Planner . 26

3.3.1 Guarantees . 28
3.4 The n-Dominoes Line Problem . 29
3.5 Summary . 32

4 General Short-Sighted Models 33
4.1 Trajectory-Based Short-Sighted SSPs . 33

4.1.1 Definition . 34
4.1.2 Triangle Tire World . 35

4.2 Greedy Short-Sighted SSPs . 40

i

4.2.1 Definition . 41
4.2.2 The n-Binary Tree Problem . 43

4.3 Extending SSiPP to General Short-Sighted Models 44
4.4 Summary . 46

5 Extending SSiPP 49
5.1 Labeled SSiPP . 49
5.2 Parallel Labeled SSiPP . 53

5.2.1 Algorithm . 54
5.2.2 Choosing States for Parallel Labeled SSiPP 57

5.3 SSiPP-FF . 59
5.4 Summary . 62

6 Related Work 63
6.1 Extensions of Value Iteration . 63
6.2 Real Time Dynamic Programming and Extensions 64
6.3 Policy Iteration and Extensions . 65
6.4 Replanners . 65
6.5 How our Work Fits . 68

7 Empirical Evaluation 71
7.1 Domains and Problems . 71

7.1.1 Probabilistic Blocks World . 71
7.1.2 Zeno Travel . 72
7.1.3 Triangle Tire World . 73
7.1.4 Exploding Blocks World . 73

7.2 Convergence to the Optimal Solution . 74
7.2.1 Problems from the International Probabilistic Planning Competition . . . 74
7.2.2 Race-track problems . 77

7.3 International Probabilistic Planning Competition 80
7.3.1 Methodology . 81
7.3.2 Choosing the value of t and heuristic for SSiPP-based planners 82
7.3.3 Results . 83

7.4 Summary . 89

8 A Real World Application: a Service Robot Searching for Objects 91
8.1 Motivation . 91
8.2 Representing the Problem as an SSP . 92
8.3 Experiments . 95
8.4 Summary . 101

9 Conclusion 103
9.1 Contributions . 103
9.2 Directions for Future Work . 104

ii

9.2.1 Automatically Choosing a Short-Sighted Model and its Parameters 104
9.2.2 Transfer Learning using Short-Sighted Problems 105
9.2.3 Short-Sighted Planning for Imprecise Probabilistic Problems 105
9.2.4 Short-Sighted Decentralized SSPs with Sparse Interactions 106
9.2.5 Short-Sighted Partially Observable Probabilistic Problems 107

9.3 Summary . 107

A Proof of Lemmas 3.1 and 3.2 109

Bibliography 113

iii

iv

List of Figures

1.1 Example of probabilistic planning problem. 1
1.2 Example of short-sighted problem for the probabilistic planning problem in Fig-

ure 1.1. 3
1.3 Overview of the thesis approach. 4
1.4 Organization of the chapters in this thesis. 7

2.1 Example of an Stochastic Shortest Path Problem (SSP). 11
2.2 Example of a factored SSP. 14
2.3 Example of PPDDL representation of the actions of the SSP in Figure 2.2. 14

3.1 Domino line problem for n = 3 . 20
3.2 Example of (s, t)-depth-based short-sighted SSPs for the 3-line dominoes prob-

lem (Figure 3.1). 22
3.3 Example of look-ahead search tree for the 3-line dominoes problem (Figure 3.1). 23
3.4 Definition of the actions in the n-dominoes line problems. 30
3.5 Average and 95% confidence interval for the number of actions to reach the goal

of the 10-dominoes line problem. 31

4.1 Example of SSP to motivate the definition of trajectory-based short-sighted SSPs. 34
4.2 Examples of (s0, t)-depth-based short-sighted SSPs for the SSP in Figure 4.1. . . 34
4.3 Examples of (s0, ρ)-trajectory-based short-sighted SSPs for the SSP in Figure 4.1. 35
4.4 Example of why the definition of Ss,ρ cannot be simplified. 36
4.5 Map and state space statistics of the triangle tire world. 37
4.6 Example of an SSP to motivate the definition of greedy short-sighted SSPs. . . . 41
4.7 Examples of (s0, 7)-greedy short-sighted SSPs for the SSP in Figure 4.6. 43
4.8 Results for the binary-tree domain experiment. 45

5.1 Grid of the hallway problem (Example 5.1) for k = 3 and r = 5. 54
5.2 Examples of (s, t)-depth-based short-sighted SSPs for the hallway problem in

Figure 5.1 . 56
5.3 Example of states returned by Algorithm 5.4 from the initial state for the hallway

problem in Figure 5.1. 58
5.4 Representation of the jumping chain problem (Example 5.2) for k = 3 61

7.1 Shape of the race-tracks used in the ε-convergence experiment. 78

v

8.1 PPDDL code for the action Search(l) of the service robot problem. 93
8.2 PPDDL code for the action PickUp(l) of the service robot problem. 93
8.3 Example of map and state space of the service robot problem. 94
8.4 Average cost of the policies πj in the map depicted in Figure 8.3(a). 96
8.5 Floor plan used in our service robot experiments. 97
8.6 Average run time for the planners to find the objects papers and toner in our

service robot problem. 100

9.1 Example of sparse-interaction multi-agent planning problem 107

vi

List of Tables

4.1 Performance comparison between depth-based and trajectory based short-sighted
SSPs for the triangle tire world. 39

5.1 Speedup of Parallel Labeled-SSiPP, for different number of parallel threads n,
w.r.t. Labeled-SSiPP in the hallway robot domain. 57

5.2 Speedup of Parallel Labeled-SSiPP using Algorithm 5.4 in the hallway problem. . 59

6.1 Summary of the related work and how our work fits in. 69

7.1 Number of blocks and the cost of actions pick-up and pick-up-from-table

for each of the 15 problems considered from the probabilistic blocks world. . . . 72
7.2 Number of cities, persons and airplanes for each of the 15 problems considered

of the zeno travel domain. 73
7.3 Number of blocks and blocks in the goal statement for each of the 15 problems

considered from the exploding blocks world. 74
7.4 Results of the ε-convergence experiment for the IPPC domains. 76
7.5 Description of each race-track used in the ε-convergence experiment. 78
7.6 Results of the ε-convergence experiment for the racetrack domain. 79
7.7 Summary of the IPPC experiment. 84
7.8 Coverage for the blocks world and zeno travel domains in the IPPC experiment. . 85
7.9 Coverage for the triangle tire world and exploding blocks world domains in the

IPPC experiment. 86
7.10 Cost of the solutions for the block world and zeno travel domains in the IPPC

experiment. 87
7.11 Cost of the solutions for the triangle tire world and exploding blocks domain in

the IPPC experiment. 88
7.12 Coverage of SSiPP-based planner in the triangle tire world using depth-based

short-sighted SSPs and the zero-heuristic. 89

8.1 Prior probability used in our service robot experiments. 95
8.2 Performance of different planners in the service robot experiments. 99

vii

viii

List of Algorithms

2.1 Real-Time Dynamic Programming (RTDP) [Barto et al., 1995] 16
2.2 FF-Replan [Yoon et al., 2007]. 17

3.1 Non-learning algorithm to solve SSPs using short-sighted SSPs. 26
3.2 Short-Sighted Probabilistic Planner (SSiPP) . 27
3.3 Algorithm to compute an ε-approximation of V ∗ using SSiPP (Algorithm 3.2). . . 28

4.1 Algorithm to run SSiPP (Algorithm 3.2) k times reusing the inferred bound V . . . 38
4.2 Algorithm to generate the state space and goal set for greedy short-sighted SSP. . . 42

5.1 CHECKSOLVED algorithm used by Labeled RTDP [Bonet and Geffner, 2003]. . . 50
5.2 Labeled SSiPP: version of SSiPP that incorporates the LRTDP labeling mechanism. 52
5.3 Parallel version of Labeled-SSiPP (Algorithm 5.2). 55
5.4 Landmark approach to compute L for Parallel Labeled-SSiPP (Algorithm 5.3). . . 58
5.5 SSiPP-FF: version of SSiPP that incorporates determinizations to obtain a non-

optimal solution efficiently. 60

ix

x

Chapter 1

Introduction

Planning is an essential part of intelligent behavior and a ubiquitous task for both humans and
rational agents [Newell and Simon, 1963]. One framework for planning is probabilistic plan-
ning, in which actions are described by the probability distribution over their possible outcomes.
Solutions to a probabilistic planning problem are policies, i.e., a mapping from states to actions.

In order to illustrate the trade-offs between different types of policies, consider the proba-
bilistic problem of an agent navigating an environment to reach a goal location with two possible
paths: (i) a maze; and (ii) a hallway with locked doors. The agent has all the necessary keys to
open the doors in the hallway; however, assume that with non-zero probability, the key jams in
the door lock, resulting in a door that cannot be unlocked. Figure 1.1 illustrates this probabilistic
planning problem.

Figure 1.1: Example of a probabilistic planning problem. The agent has to reach the goal location
from the initial location. The two doors in the hallway (top) are locked and, with non-zero
probability, the key jams in the doors. A jammed key cannot open a door.

One possible solution for probabilistic planning problems is a policy that maps every state
of the problem to an action. Solutions of this class, i.e., closed policies, are extremely powerful
because they encompass all the possible probabilistic reachable states in the environment. There-
fore, a closed policy for the example in Figure 1.1 encompasses the cases in which: the keys do
not jam; the key jams in the first door; the key opens the first door and jams in the second; and

1

2 CHAPTER 1: INTRODUCTION

the complete solution of the maze. Suppose the probability of the key jamming is 0.01, then
the probability of not reaching the goal through the hallway is 1 − 0.992 = 0.0199. Thus, with
probability 0.9801, the possibly large computational effort to find the maze’s solution is wasted,
since the maze would not be explored.

The second class of possible solutions is a policy that maps only a subset of states to actions.
Such policies, i.e., partial policies, do not address all possible probabilistic reachable states in
the environment. Therefore, a state not predicted by the partial policy might be reached and,
when and if such a state is reached, a new partial policy has to be computed and executed. In the
example of Figure 1.1, a possible partial policy is to reach the goal through the hallway and not
consider the case in which a key jams. If a key jams, then a new partial policy in which the agent
backtracks and solves the maze is returned. Note that this partial policy ignores the size of the
maze, and it would be executed even if the probability of jamming the key is high or if the maze
is small.

Algorithms to solve probabilistic planning problems can be classified according to the type
of policy returned by them: probabilistic planners, e.g., [Barto et al., 1995], compute (optimal)
closed policies; and replanners, e.g., [Yoon et al., 2007], return partial policies. Since proba-
bilistic planners must consider all the probabilistic reachable states in order to compute a closed
policy, their scalability is limited to small problems. Alternatively, replanners compute partial
policies based on simplifications of the original problem and are able to scale up to large prob-
lems. A common simplification applied by replanners is to relax the probabilistic actions into
deterministic actions [Yoon et al., 2007]. This action relaxation results in algorithms that are
oblivious to probabilities. Therefore, replanners based on action simplification obtain good per-
formance in some domain but poor performance in probabilistic interesting problems [Little and
Thiébaux, 2007], i.e., problems in which probabilities cannot be ignored.

This thesis introduces a novel approach to solve probabilistic planning problems by relaxing
them into short-sighted problems. A short-sighted problem is a relaxation in which the state
space of the original problem is pruned and artificial goals are added to heuristically estimate the
cost of reaching an original goal from the states pruned. Figure 1.2 shows an example of short-
sighted problem for the probabilistic planning problem depicted in Figure 1.1. This short-sighted
problem example perfectly represents the hallway path and prunes the maze path due to its large
size. The locations A1, · · · , A4 represent artificial goals, i.e., non-goal locations of the original
problem which are goals for the short-sighted problem.

Differently from previously proposed relaxations, short-sighted problems maintain the orig-
inal structure of actions and no restrictions are imposed in the maximum number of actions that
can be executed. For instance, the probabilistic action to open a door is the same in both the orig-

3

Figure 1.2: Example of short-sighted problem for the probabilistic planning problem in Fig-
ure 1.1. A1 to A4 represent artificial goals. A heuristic is used to estimate the cost of solving the
maze from each location Ai.

inal problem of our example (Figure 1.1) and its short-sighted example (Figure 1.2). Therefore,
the solutions for short-sighted problems take into consideration all the probabilistic outcomes of
actions and their probabilities. In this thesis, we study different criteria to generate short-sighted
problems, i.e., to how prune the state space, and the relation between the obtained short-sighted
models and previously proposed relaxation approaches.

Another important aspect of short-sighted problems is the guidance towards the original goals
offered by the artificial goals. For instance, in the short-sighted problem in Figure 1.2, the sum of
Manhattan distances can be used as a heuristic to estimate the cost of solving the original problem
starting from each artificial goal Ai. Therefore, an optimal closed policy for this short-sighted
problem is able to heuristically approximate the trade-off between the two different paths in our
running example: if the probability of a key jamming is small, the hallway path is preferred since
it is the shortest path; alternatively, if the jamming probability is large, then solving the (large)
maze is chosen due to the low probability of successfully opening both doors in the hallway path.
Since short-sighted problems are small with respect to the original problem, the computation of
an optimal closed policy for them is feasible.

This thesis then introduces different planning algorithms that use short-sighted problems and
their optimal closed policies in order to solve probabilistic planning problems. These algorithms
consist in iteratively generating and executing a closed policy for short-sighted problems until the
goal state of the original problem is reached. Different methods of combining the solutions from
short-sighted problems are studied, including sequential and parallel approaches. We formally
analyze the introduced algorithms, focusing on their optimality guarantees with respect to the
original probabilistic problem. Finally, this thesis also contributes a rich empirical comparison
between the proposed algorithms and state-of-the-art probabilistic planners and replanners.

4 CHAPTER 1: INTRODUCTION

(a) (b)

Figure 1.3: Overview of the thesis approach. (a) Representation of the state space with one short-
sighted problem and (b) a sequence of short-sighted problems. The initial state of the problem is
represented by the blue dot, the goal states are represented by the green star. Each short-sighted
problem is depicted as a cloud. States in the border of the cloud are artificial goals and the color
gradient in the cloud contour represents the heuristic cost to reach a goal state: darker regions are
more costly than lighter regions. The red line represents the states visited during the execution
of a closed policy of the respective short-sighted problem.

1.1 Thesis Question and Approach

This thesis seeks to answer the question,

How to plan for probabilistic environments such that it scales up while offering
formal guarantees underlying the policy generation?

We answer this question by introducing new models to represent subproblems of probabilistic
planning problems, developing new algorithms to exploit the proposed subproblems and analyz-
ing, both theoretically and empirically, the proposed algorithms.

Precisely, we introduce different models to represent short-sighted problems, i.e., subprob-
lems of the original problem with pruned state space and artificial goals to heuristically guide the
search towards the original goals. Figure 1.3(a) depicts the state space of a probabilistic plan-
ning problem and the state space of a short-sighted problem. Each short-sighted model defines a
criterion to prune the state space of the original problem and, pictorially, a short-sighted model
governs the shape of the clouds in Figure 1.3. We formally show the relationship between the
optimal solutions for short-sighted models and probabilistic planning problems, e.g., the former
is a lower bound for the latter.

Based on the general definition of short-sighted problems, we design algorithms that itera-
tively generate and solve short-sighted problems of the original probabilistic planning problem.
Due to the reduced size of the short-sighted problems, an optimal closed policy can be com-
puted and these policies are combined in order to obtain a solution to the original probabilistic
planning problem. Figure 1.3(b) depicts this process in which a closed policy is computed for

1.2 CONTRIBUTIONS 5

a short-sighted problem (cloud) and executed (red line) until a goal of the original problem is
reached; if an artificial goal is reached (point in the cloud’s border), then this process is repeated
using the reached artificial goal as the new initial state.

We also prove the theoretical properties of the introduced algorithms, e.g., guarantee to al-
ways reach an original goal state and convergence to the optimal solution of the original problem.
Finally, we empirically compare the proposed algorithms and short-sighted models to understand
the different trade-offs between them.

1.2 Contributions

The key contributions of this thesis are:

• Depth-based, Trajectory-based and Greedy Short-Sighted Probabilistic Problems.
We introduce three different short-sighted models based on different criteria to prune the
state space: depth-based short-sighted problems, in which all the states are reachable using
no more than a given number of actions; trajectory-based short-sighted problems, in which
all states are reachable with probability greater or equal than a given threshold; and greedy
short-sighted problems, in which the states have the best trade-off between probability of
being reached and expected cost to reach the goal from them.

• Short-Sighted Probabilistic Planner and extensions. We introduce the Short-Sighted
Probabilistic Planner (SSiPP) algorithm that solves probabilistic planning problems using
short-sighted problems. We extend SSiPP in three different directions: Labeled SSiPP,
which improves the convergence of SSiPP to the optimal solution; SSiPP-FF, which im-
proves the efficiency of SSiPP for generating suboptimal solutions; and Parallel Labeled
SSiPP, which solves multiple short-sighted problems in parallel to speedup the search for
the optimal solution.

• Theoretical and Empirical Analysis. We prove the theoretical properties of our algo-
rithms, e.g., termination (i.e., always reach a goal state) and optimality. We also provide a
comprehensive empirical evaluation of the proposed algorithms under different scenarios:
(i) finding the optimal solution; (ii) finding a solution with limited time to compute the
next action to be executed; and (iii) finding a solution under the International Probabilis-
tic Planning Competition [Younes et al., 2005, Bonet and Givan, 2007, Bryce and Buffet,
2008] rules.

6 CHAPTER 1: INTRODUCTION

1.3 Guide to the Thesis

Here we outline the chapters that follow.

• Chapter 2 – Background. We review the basics for Stochastic Shortest Path problems
(SSPs), our chosen model to represent probabilistic planning problems. We also review the
following algorithms necessary for the next chapters: Real-Time Dynamic Programming
[Barto et al., 1995] and FF-Replan [Yoon et al., 2007].

• Chapter 3 – Short-Sighted Probabilistic Planning. We present depth-based short-sighted
Stochastic Shortest Path problems, a novel model to represent subproblems of SSPs. We
also introduce the Short-Sighted Probabilistic Planner (SSiPP) algorithm using the depth-
based short-sighted SSPs as model for the subproblems generated by SSiPP. We prove the
relations between the solutions of SSPs and their depth-based short-sighted SSPs and that
SSiPP is optimal. We conclude by showing the effectiveness of SSiPP using depth-based
short-sighted SSPs in a proposed series of problems.

• Chapter 4 – General Short-Sighted Models. This chapter extends the concept of depth-
based short-sighted SSPs to a general model in which a function to prune the state space
is given. Using this general formulation, we introduce two new models for short-sighted
problems: trajectory-based short-sighted SSPs and greedy short-sighted SSPs.

• Chapter 5 – Extending Short-Sighted Probabilistic Planner. We present three exten-
sions of SSiPP: Labeled SSiPP, SSiPP-FF and Parallel Labeled SSiPP. We also present the
theoretical guarantees of each of these algorithms and demonstrate their effectiveness in
different proposed domains.

• Chapter 6 – Related Work. We discuss the previous work in optimal and suboptimal
probabilistic planning, and how they relate to this thesis.

• Chapter 7 – Empirical Evaluation. This chapter presents an extensive empirical evalu-
ation of the proposed probabilistic planners against the state-of-the-art probabilistic plan-
ners.

• Chapter 8 – A Real World Application: a Service Robot Searching for Objects. We
show how the problem of an autonomous agent moving in a known environment to find
objects, while minimizing the search cost, can be solved by using short-sighted probabilis-
tic planning. As a concrete example, we use the problem of a mobile service robot that
moves in a building to find an object, whose location is not deterministically known, and
to deliver it to a location.

1.3 GUIDE TO THE THESIS 7

Figure 1.4: Organization of the chapters in this thesis.

• Chapter 9 – Conclusion. We conclude this dissertation with a summary of our contribu-
tions along with a discussion of future work for short-sighted planning.

Figure 1.4 illustrates the chapters’ organization and the dependency between chapters of this
dissertation. All readers should begin with Chapter 2, which provides the necessary mathematical
background and defines the notation used in this dissertation.

8 CHAPTER 1: INTRODUCTION

Chapter 2

Background

This chapter introduces the Stochastic Shortest Path Problems, the probabilistic planning model
used in this dissertation. We begin with a basic overview (Section 2.1) that follows the presen-
tation in [Bertsekas, 1995] with small differences in notation to match the planning community
notation. In Section 2.2, we present the high-level representation of probabilistic planning prob-
lems proposed by the planning community. Finally, Section 2.3 reviews two standard algorithms
for probabilistic planning, Real-Time Dynamic Programming and FF-Replan, that are frequently
referred in this dissertation.

2.1 Stochastic Shortest Path Problem

A Stochastic Shortest Path Problem (SSP) [Bertsekas and Tsitsiklis, 1991] is a tuple
S = 〈S, s0,G,A, P, C〉, in which:

• S is the finite set of states;

• s0 ∈ S is the initial state;

• G ⊆ S is the non-empty set of goal states;

• A is the finite set of actions;

• P (s′|s, a) represents the probability that s′ ∈ S is reached after applying action a ∈ A in
state s ∈ S; and

• C(s, a, s′) ∈ (0,+∞) is the immediate cost incurred when state s′ is reached after ap-
plying action a in state s. This function is required to be defined for all s, a, s′ in which
P (s′|s, a) > 0.

9

10 CHAPTER 2: BACKGROUND

In SSPs, an agent executes actions a ∈ A in discrete time steps, at a state s ∈ S. The
chosen action a changes state s to state s′ with probability P (s′|s, a) and the cost C(s, a, s′) is
incurred. If a goal state sG ∈ G is reached, the problem finishes, i.e., no more actions need to be
executed. The sequence of states T = 〈s0, s1, s2, . . . 〉 visited by the agent is called a trajectory
and the state si is the state of the environment at time step i. Thus, for every trajectory T , there
exists at least one sequence of actions 〈a0, a1, a2, . . . 〉 such that ai is executed in state si and
P (T |〈a0, a1, a2, . . . 〉) =

∏
i∈{0,1,... } P (si+1|si, ai) > 0.

The horizon is the maximum number of actions the agent is allowed to execute in the envi-
ronment, and therefore the maximum size of T . For SSPs, the horizon is indefinite since, under
certain conditions discussed later in this section, a goal state can be reached using a finite, yet
unbounded, number of actions. If the horizon is set to tmax, then the obtained model is known
as a finite-horizon Markov Decision Process (MDP) [Puterman, 1994]. Alternatively, if no goal
states are given, then the horizon becomes infinite since no stop condition is given to the agent.
In order to guarantee that the total accumulated cost is finite in such models, the cost incurred
at time step t is discounted by γt, for γ ∈ (0, 1). The obtained model is known as discounted
infinite-horizon MDPs [Puterman, 1994]. Both finite-horizon and discounted infinite-horizon
MDPs and are special cases of SSPs [Bertsekas and Tsitsiklis, 1996].

A solution to an SSP is a policy π, i.e., a mapping from S to A. We denote all the states reach-
able from s0 when following π as Sπ ⊆ S and the set of states in which replanning is necessary
as Rπ. Formally, Rπ = {s ∈ S \G|π is not defined for s}. A policy π can be classified according
to Sπ and Rπ. If a policy π can be followed from s0 without replanning, i.e., Rπ ∩ Sπ = ∅, then
π is a closed policy. A special case of closed policies is the complete policies, i.e., policies that
can be followed from any state s ∈ S without replanning. Thus, for any complete policy π, we
have that Rπ = ∅. If a policy π is not closed, then Rπ ∩ Sπ 6= ∅ and π is known as a partial
policy. For any partial policy π, replanning has non-zero probability of happening, since every
state s ∈ Rπ ∩ Sπ has non-zero probability of being reached when following π from s0.

Policies can also be classified according to their termination guarantee. π is a proper policy
if it is inevitable to reach a goal state when following the policy π from s0. Formally:

Definition 2.1 (Proper policy). A policy π is proper if, for all s ∈ Sπ, there exists a trajectory
T = 〈s, s1, . . . , sk〉 generated by π such that sk ∈ G and k ≤ |S|.
A policy that is not proper is said to be improper. A common assumption used in the theoretical
results for SSPs is:

Assumption 2.1. There exists at least one policy that is both proper and complete.

By definition, every proper policy is closed and every partial policy is improper; however,
not all closed policies are proper. To illustrate this relationship between closed and proper poli-

2.1 STOCHASTIC SHORTEST PATH PROBLEM 11

s
2

s
k

s
0

s
1

s
1
’

a
0

a
1

... s

p
1−p

1−p

p

G

Figure 2.1: Example of an Stochastic Shortest Path Problem (SSP). The initial state is s0, the
goal set is G = {sG} and C(s, a, s′) = 1,∀s ∈ S, a ∈ A and s′ ∈ S.

cies, consider the SSP depicted in Figure 2.1: π0 = {(s0, a0), (s′1, a0)} is a proper policy and
Sπ0 = {s0, s′1, sG}; π1 = {(s0, a1), (s1, a1)} is a partial policy because π1(s2) is not defined; and
π2 = {(s0, a1), (s1, a0)} is a closed and improper policy since, no goal state is reachable from s0

when following π2 and π2 is defined for Sπ2 = {s0, s1}.

Given a closed policy π, V π(s) is the expected accumulated cost to reach a goal state from
state s ∈ Sπ. The function V π, defined at least over Sπ, is called the value function for π and is
the fixed point solution for the following system of equations:

V π(s) =

0 if s ∈ G

E [C(s, a, s′) + V π(s′)|s, a = π(s)] otherwise
, ∀s ∈ Sπ. (2.1)

where E[C(s, a, s′) + V π(s′)|s, a] =
∑

s′∈S P (s′|s, a) [C(s, a, s′) + V π(s′)]. Another common
assumption for SSPs is:

Assumption 2.2. For every closed and improper policy π, there exists at least one state s ∈ Sπ

such that V π(s) is infinite.

This assumption is already true in our definition of SSPs, since the cost function C(s, a, s′) is
strictly positive. For instance, consider the SSP depicted in Figure 2.1; the trajectories generated
by the closed and improper policy π2 = {(s0, a1), (s1, a0)} have infinite size and, at each time
step, a strictly positive immediate cost is incurred, therefore V π2(s0) = V π2(s1) =∞.

An optimal policy π∗ is any proper policy that minimizes, over all closed policies, the ex-
pected cost of reaching a goal state from s0, i.e., V π∗(s0) ≤ minπ s.t. π is closed V

π(s0). For a given
SSP, π∗ might not be unique; however, the optimal value function V ∗, representing for each
state s the minimal expected accumulated cost to reach a goal state overall policies, exists and is

12 CHAPTER 2: BACKGROUND

unique [Bertsekas and Tsitsiklis, 1996]. For all optimal policies π∗ and s ∈ Sπ
∗ , we have that

V ∗(s) = V π∗(s); formally, V ∗ is the fixed point solution for the Bellman Equations:

V ∗(s) =

0 if s ∈ G

min
a∈A

E [C(s, a, s′) + V ∗(s′)|s, a] otherwise
, ∀s ∈ S. (2.2)

Every optimal policy π∗ can be obtained by replacing min by argmin in (2.2), i.e., π∗ is a greedy

policy of V ∗:

Definition 2.2 (Greedy policy). Given a value function V , the greedy policy πV is such that
πV (s) = argmina∈AE[C(s, a, s′) + V (s′)|s, a] for all s ∈ S \ G. For the states s in which V is
not defined, V (s) =∞ is assumed.

A possible approach to computing V ∗ is the value iteration algorithm (VI) [Howard, 1960]:
given an initial guess V 0 for V ∗, compute the sequence 〈V 0, V 1, . . . , V k〉 where V t+1 is obtained
by performing a Bellman backup in V t, that is, applying the operator B in the value function V t

for all s ∈ S:

V t+1(s) = (BV t)(s) =

0 if s ∈ G

min
a∈A

E
[
C(s, a, s′) + V t(s′)|s, a

]
otherwise

.

We denote by Bk the composition of the operator B, i.e., (BkV)(s) = (B(Bk−1)V)(s) for all
s ∈ S; thus, V t = BtV 0. Given a value function V , BtV represents the optimal solution for the
SSP in which the horizon is limited to t and the extra cost V (s) is incurred when agent reaches
state s ∈ S \ G after applying t actions. (BtV)(s) is known as t-look-ahead value of state s
according to V .

For SSPs in which Assumption 2.1 holds, V k converges to V ∗ as k →∞ and 0 ≤ V ∗(s) <∞
for all s ∈ Sπ

∗ [Bertsekas, 1995]. In practice, we are interested in the problem of finding
ε-optimal solutions, i.e., given ε > 0, to find a value function V that is no more that ε away
from V ∗:

Definition 2.3 (ε-optimality). Given an SSP S, a value function V for S is ε-optimal if

R(S, V) = max
s∈S′

R(s, V) = max
s∈S′
|V (s)− (BV)(s)| ≤ ε,

where S′ = Sπ
V , i.e., the states reachable from s0 when following the greedy policy πV ; R(s, V)

andR(S, V) are known as the Bellman residual w.r.t. V of the state s and the SSP S, respectively.

Any initial guess V 0 for V ∗ can be used in VI and if V 0 is a lower bound of V ∗, i.e.,
V 0(s) ≤ V ∗(s) for all s ∈ S, then V 0 is referred as an admissible heuristic. For any two value

2.2 FACTORED REPRESENTATION 13

functions V and V ′, we write V ≤ V ′ if V (s) ≤ V ′(s) for all s ∈ S, thus, V 0 is an admissible
heuristic if V 0 ≤ V ∗. Another important definition regarding value functions is monotonicity:

Definition 2.4 (Monotonic Value Function). A value function V is monotonic if V ≤ BV .

The following well-known result is necessary in most of our proofs in this dissertation:

Theorem 2.1. Given an SSP S in which Assumption 2.1 holds, then the operator B preserves

[Bertsekas and Tsitsiklis, 1996, Lemma 2.1]:

• admissibility: if V ≤ V ∗, then BkV ≤ V ∗ for k ∈ N∗; and

• monotonicity: if V ≤ BV , then V ≤ BkV for k ∈ N∗.

2.2 Factored Representation

In the previous section, we reviewed SSPs using their enumerative representation (also known
as explicit representation). In the enumerative representation, the set of states S, the set of goal
states G, the set of actions A and the transition probability distributions P (·|·, ·) are represented
explicitly by directly enumerating each element of them. This enumerative specification of S
can be burdensome for large problems, especially the encoding of P (·|·, a) as a matrix S × S

for each action a. Also, in many cases it is advantageous, from both the computational and
representational perspective, to define a set of states by their properties; for instance, the goal for
a service robot navigating in a building could be compactly represented by a high-level statement
such as “the robot is at a kitchen”.

To compactly represent large SSPs and to use high-level statements to represent set of states,
the factored representation is used [Boutilier et al., 1999]. In the factored representation, SSPs
are encoded using state variables, i.e., variables fi with domain Di, and the set of state vari-
ables is denoted as F = {f1, · · · , fk}. The cross product ×|F|i=1Di represents the state space S,
thus a state s ∈ S is the tuple 〈v0, · · · , v|F|〉 where vi ∈ Di. For example, the SSP in Fig-
ure 2.2 can be factored using two binary state variables, x and y, such that state 〈x, y〉 equals
the state si for i = x+ 2y. For the rest of this dissertation, we assume the domain of each state
variable f ∈ F to be binary, thus |S| = 2|F|.

Another benefit of using state variables is a compact representation of the transition probabil-
ities P (·|·, a) using two-stages temporal Bayesian Networks [Boutilier et al., 1999]. To illustrate
the space savings obtained by using the factored representation of actions, consider action a0 of
the SSP depicted in Figure 2.2. The enumerative representation of P (·|·, a0) is a 4-by-4 stochastic
matrix, which is encoded with 4 × 3 = 12 numbers. For this example, a factored representa-
tion is P (〈x′, y′〉|〈x, y〉, a0) = P (x′|x, a0) × P (y′|y, a0) where P (x′ = 1|x = 0, a0) = 0.25,

14 CHAPTER 2: BACKGROUND

s
2

s
0

s
1

s
3

a
0

a
1

x=0

x=1

0.75

0.25

0
.7
5

0
.2
5

y=0 y=1

Figure 2.2: Example of a factored SSP. The initial state is s0, the goal set G = {s3} and
C(s, a, s′) = 1 for all s ∈ S, a ∈ A, s′ ∈ S. This SSP can be represented as a factored SSP with
two binary state variables, x and y, such that the state 〈x, y〉 equals the state si for i = x+ 2y.

(:action a0
:effect (and (y) (prob 0.25 (x) 0.75 (not (x))))

)
(:action a1
:precondition (not (x))
:effect (x)

)

Figure 2.3: Example of PPDDL representation of the actions of the SSP in Figure 2.2. Note that
only action a1 has a precondition.

P (x′ = 1|x = 1, a0) = 1 and P (y′ = 1|y = 0, a0) = P (y′ = 1|y = 1, a0) = 1, which can be
encoded with only 4 numbers.

The Probabilistic Planning Domain Description Language (PPDDL) [Younes and Littman,
2004] is a standard language to represent factored SSPs that is used in the international proba-
bilistic planning competitions (IPPC) [Younes et al., 2005, Bonet and Givan, 2007, Bryce and
Buffet, 2008]. PPDDL syntax is based on LISP and an action a consists of a precondition, that
is, a formula over the state variables characterizing the states in which a is applicable, and an
effect. The effect describes how the states variables change when a is applied. Any state variable
not explicitly modified by a remains unchanged after executing a (frame assumption). Figure 2.3
contains the PPDDL representation of the actions a0 and a1 of the SSP represented in Figure 2.2.

PPDDL also features predicates and action schemas. These extensions use the concept of do-
main variables, i.e., class of finite objects. A predicate is mapping from a value assignment of one
or more domain variables to a state variables. For instance, we can model a graphG = 〈N,E〉 by
using a domain variable called NODE in which its domain is N and edges of the graph as the pred-
icate edge(i, j) where i and j are domain variables of the type NODE; in this case, each possible
instantiation of edge(i, j) represents one binary state variable. Therefore, if the planning problem
defines three objects of the type NODE, namely n1, n2, n3, then six state variables are instantiated

2.3 RELEVANT PROBABILISTIC PLANNING ALGORITHMS 15

representing the edges (n1, n2), (n1, n3), (n2, n1), . . . , (n3, n2). Similarly to predicates, action
schemas map value assignment of one or more domain variables to an action.

2.3 Relevant Probabilistic Planning Algorithms

In this section, we review two algorithms for solving SSPs: Real-Time Dynamic Programming

(Section 2.3.1) that uses dynamic programming and sampling in order to compute optimal closed
policies; and FF-Replan (Section 2.3.2) that relaxes SSPs into deterministic problems and returns
partial policies.

2.3.1 Real-Time Dynamic Programming

Real-Time Dynamic Programming (RTDP) [Barto et al., 1995] is an extension of Learning-Real-
Time-A* [Korf, 1990] for probabilistic planning problems. RTDP computes closed policies
instead of complete policies, and, since a closed policy π is defined only for the states in Sπ ⊆ S,
RTDP converges to the ε-optimal solution faster than VI when |Sπ| � |S|.

RTDP, presented in Algorithm 2.1, simulates the current greedy policy πV (Line 13) to sam-
ple trajectories from the initial state s0 to a goal state. Each trajectory is sampled by the procedure
RTDP-TRIAL (Line 7): while the current state s is not a goal state, the greedy action aw.r.t. V (s)

is chosen; a Bellman backup is applied on s; and a resulting state of applying a on s is sampled
(Lines 10 to 13). The value function V is initialized by the input heuristicH (Line 3) using a lazy
approach, i.e., if the value V (s) is requested and V is not defined on s, then H(s) is computed
(on demand) and assigned to V (s).

Since the greedy selection of actions is interleaved with updates on V , RTDP-TRIAL cannot
be trapped in loops and always reaches a goal state. Formally, if Assumption 2.1 holds for the
given SSP, then RTDP-TRIAL always terminates. Moreover, if Assumption 2.1 holds and the
heuristicH used is also admissible, then RTDP always converges to the optimal solution V ∗, i.e.,
R(S, V) = 0, after several calls of RTDP-TRIAL (possibly infinitely many) [Barto et al., 1995,
Theorem 3, p. 132].

2.3.2 FF-Replan

FF-Replan [Yoon et al., 2007] is a replanner based on determinization, i.e., a relaxation of a given
SSP S = 〈S, s0,G,A, P, C〉 into a deterministic problem D = 〈S, s0,G,A′〉. The set A′ contains
only deterministic actions represented as a = s→ s′, i.e., a deterministically transforms s into s′.
Two common determinization techniques are:

16 CHAPTER 2: BACKGROUND

1 RTDP(SSP S = 〈S, s0,G,A, P, C〉, H a heuristic for V ∗, ε > 0)
2 begin
3 V ← Value function for S with default value given by H
4 while R(S, V) > ε do
5 V ← RTDP-TRIAL(S, V)

6 return V

7 RTDP-TRIAL(SSP S = 〈S, s0,G,A, P, C〉, value function V)
8 begin
9 s← s0

10 while s 6∈ G do
11 a← πV (s)
12 V (s)← (BV)(s)
13 s← APPLY-ACTION(a,s)

14 return V
Algorithm 2.1: Real-Time Dynamic Programming (RTDP) [Barto et al., 1995].

• most-likely outcome, in which A′ = {s → s′|∃a ∈ A s.t. s′ = argmaxŝ P (ŝ|s, a)} (break-
ing ties randomly); and

• all-outcomes, where A′ = {s→ s′|∃a ∈ A s.t. P (s′|s, a) > 0}.

The idea behind FF-Replan (Algorithm 2.2), is simple and powerful: relax the probabilistic
problem into a deterministic problem D (Line 7) and use the deterministic planner FF [Hoffmann
and Nebel, 2001] to solve D (Line 8). FF-Replan stores the obtained solution for D in the
policy π (Line 10) and there is no guarantee that π is a closed policy for the original SSP S, that
is, π might be a partial policy for S. The policy π is followed until failure (Line 11), i.e., π is not
defined for the current state s; if and when π fails, FF is re-invoked to plan again from the failed
state.

An earlier version of FF-Replan employed the most-likely outcome determinization [Yoon
et al., 2007]; however this approach is not complete since the goal might not reachable in the
most-likely determinization of S even when Assumption 2.1 holds for S. Alternatively, if the all-
outcomes determinization is used, then FF-Replan is complete when Assumption 2.1 holds, i.e.,
FF-Replan always reaches a goal state. In this dissertation, we consider the most recent version
of FF-Replan, i.e., when the all-outcomes determinization is used.

FF-Replan is the winner of the first International Probabilistic Planning Competition (IPPC)
[Younes et al., 2005] in which it outperformed the probabilistic planners due to their poor scala-
bility. In general, FF-Replan can quickly reach a goal state and scales up to large problems when

2.4 SUMMARY 17

1 FF-REPLAN(SSP S = 〈S, s0,G,A, P, C〉)
2 begin
3 π ← empty-policy
4 s← s0
5 while s 6∈ G do
6 if π is not defined for s then
7 D← ALL-OUTCOMES-DETERMINIZATION(S)
8 (s1, a1, s2, . . . , ak−1, sk)← FF(D, s)
9 foreach i ∈ {1, . . . , k − 1} do

10 π(si)← ai

11 s← APPLY-ACTION(π(s),s)

Algorithm 2.2: FF-Replan [Yoon et al., 2007]. On Line 8, the deterministic planner FF [Hoff-
mann and Nebel, 2001] is called to compute a sequence of states and actions starting from
the current state s that reaches a goal state sk ∈ G. Different determinization approaches and
deterministic planners can be used in Lines 7 and 8, respectively.

Assumption 2.1 holds. Despite its major success, FF-Replan is non-optimal and oblivious to
probabilities and dead ends, leading to high-cost solutions and poor performance in probabilistic
interesting problems [Little and Thiébaux, 2007], e.g., the triangle tire-domain.

2.4 Summary

In this chapter we described Stochastic Shortest Path Problems (SSPs), the framework used in
this dissertation to represent probabilistic planning problems. We also presented the main defi-
nitions and results regarding the solutions of SSPs that are necessary for our proofs in this dis-
sertation. We described how to compactly represents SSPs through the factored representation
and the PPDDL language, a standard language from the planning community to represent prob-
abilistic planning problems. Finally, we reviewed two main algorithms to solve SSPs: RTDP, an
optimal probabilistic planner that returns closed policies; and FF-Replan, a replanner based on
determinizations. In the next chapter, we exam how to combine the main features of both RTDP
and FF-Replan, i.e., optimally and scalability.

18 CHAPTER 2: BACKGROUND

Chapter 3

Short-Sighted Probabilistic Planning

In this chapter, we present the two main concepts for short-sighted probabilistic planning, i.e.,
how to generate short-sighted problems and how to plan using short-sighted problems [Trevizan
and Veloso, 2012a, Trevizan and Veloso, 2013]. We begin by comparing RTDP and FF-Replan to
motivate the definition of short-sighted problems. We then formally define the concept of short-
sighted problems in Section 3.2 and prove its properties with respect to the original probabilistic
planning problem in Section 3.2.1. In Section 3.3, we present the Short-Sighted Probabilistic

Planner algorithm that solves probabilistic planning problems using the short-sighted problems
defined previously. The properties of this algorithm, e.g., optimality, are proven in Section 3.3.1.
We empirically demonstrate the benefits of Short-Sighted Probabilistic Planner against RTDP
and FF-Replan in Section 3.4 using a proposed series of increasingly larger problems.

3.1 Motivation

In order to motivate the introduction of short-sighted problems, consider the problem of building
a domino line. Precisely, given 3 dominoes, the goal is to build a straight line using all the 3

dominoes. A domino can be placed at position l ∈ {0, 1, 2} of the line if l is empty, and, with
probability 0.9, the new domino falls and drops all the other dominoes already in the line. The
cost of action place is 1 independently of its outcome. Also, the special action delegate, which
delegates the construction of the domino line to a more reliable agent, is available when the
line is empty. Delegate deterministically builds the complete line of 3 dominoes at a cost of 9.
Figure 3.1 depicts this problem.

Due to the all-outcomes determinization (Section 2.3.2), FF-Replan considers that it is pos-
sible to deterministically place each one of the dominoes and this relaxed action costs 1, since
the original action place has cost 1. Therefore FF-Replan solves this problem by building the

19

20 CHAPTER 3: SHORT-SIGHTED PROBABILISTIC PLANNING

Initial

Goal

Figure 3.1: Domino line problem for n = 3. The initial state is the empty line and the goal is
to build a line of 3 dominoes. The full-line arrows depict the action place that succeed with
probability 0.1, otherwise (probability 0.9) all dominoes in the line are dropped (for ease of
presentation, this side-effect is depicted as a ball-ended line). The action delegate is shown as
a dashed arrow.

domino line piece-by-piece at a total relaxed cost of 3. However, in the original problem, the
expected cost of this solution is 1110 (the formal analysis of the expected cost is provided in
Section 3.4).

Alternatively, RTDP samples several trajectories from the initial state (empty dominoes line)
to the goal (3-dominoes line). Initially, these sampled trajectories contains only the action place,
since it costs 1 and delegate costs 9. After a large amount of samples, RTDP learns that building
the dominoes line piece-by-piece is more expensive on expectation than using action delegate,
i.e., expected cost of 1110 versus constant cost of 9, and selects delegate, the optimal solution
for this problem.

Notice that RTDP is forced to explore the whole state space, i.e., all the combinations of 1, 2
and 3 dominoes placements before inferring that delegate is the optimal action. However, the
expected cost of successfully placing the first domino is already larger than the cost of delegate.
Precisely, the expected cost c of successfully placing the first domino is c = 1 + 0.9c = 10.
Therefore, if we divide this problem of building a 3-dominoes lines into 3 subproblems, namely,
building a line of 1 domino, then a line of 2, and finally a line of 3 dominoes, we would be able
to infer that delegate is the optimal solution after solving only first subproblem, i.e., building a
line of 1 domino.

In the remainder of this chapter, we introduce short-sighted problems, a novel definition of
subproblems of probabilistic planning problems in which actions are not simplified, therefore
the expected cost of each subproblem can be computed. We then show how to use short-sighted

3.2 SHORT-SIGHTED STOCHASTIC SHORTEST PATH PROBLEMS 21

problems in order to efficiently solve probabilistic planning problems. We also revisit the domino
example in Section 3.4 to show the trade-offs of short-sighted planning.

3.2 Short-Sighted Stochastic Shortest Path Problems

In this section, we define depth-based short-sighted Stochastic Shortest Path Problems, a special
case of Stochastic Shortest Path Problems (SSPs) in which the original problem is transformed
into a smaller one by:

• pruning the states that have a zero probability of being reached using at most t actions;

• adding artificial goal states; and

• incrementing the cost of reaching artificial goals by a heuristic value in order to guide the
search towards the goals of the original problem.

Throughout this chapter, we refer to depth-based short-sighted Stochastic Shortest Path Prob-
lems as short-sighted SSPs and before formally introduce them, we need to define the action-
distance between states:

Definition 3.1 (δ(s, s′)). The non-symmetric distance δ(s, s′) between two states s and s′ is:

δ(s, s′) =

0 if s = s′

1 + min
a∈A

min
ŝ : P (ŝ|s,a)>0

δ(ŝ, s′) otherwise
.

δ(s, s′) is equivalent to the minimum number of actions necessary to reach s′ from s in the all-
outcomes determinization.

Using the action-distance function δ (Definition 3.1), the short-sighted SSP associated to an
SSP is defined as:

Definition 3.2 (Short-Sighted SSP). Given an SSP S = 〈S, s0,G,A, P, C〉, a state s ∈ S, t ∈ N∗

and a heuristic H , the (s, t)-short-sighted SSP Ss,t = 〈Ss,t, s,Gs,t,A, P, Cs,t〉 associated with S is
defined as:
• Ss,t = {s′ ∈ S|δ(s, s′) ≤ t};
• Gs,t = {s′ ∈ S|δ(s, s′) = t} ∪ (G ∩ Ss,t);

• Cs,t(s′, a, s′′) =

C(s′, a, s′′) +H(s′′) if s′′ ∈ Gs,t \ G

C(s′, a, s′′) otherwise
, ∀s′ ∈ Ss,t, s

′′ ∈ Ss,t, a ∈ A

For simplicity, when the heuristic H is not clear by context nor explicit, then H(s) = 0 for all
s ∈ S.

22 CHAPTER 3: SHORT-SIGHTED PROBABILISTIC PLANNING

Initial

Goal

Art.Goal

Art.Goal

Art.Goal

(a)
Art.Goal

Art.Goal

Art.Goal

Initial

Goal

(b)

Figure 3.2: Example of (s, t)-depth-based short-sighted SSPs for the 3-line dominoes problem
(Figure 3.1). For both (a) and (b) the parameter s equals the initial state (no dominoes) and t
equals to 1 and 2 for (a) and (b) respectively. The action delegate is shown as a dashed arrow
and ball-ended lines represent the side-effect of place in which all dominoes pieces are dropped,
i.e., transition to the initial state.

Figure 3.2 shows the (s0, 1) and (s0, 2)-short-sighted SSP associated with the 3-dominoes
line example (Figure 3.1) where s0 represents the initial state (i.e., no dominoes). The state
space Ss,t of (s, t)-short-sighted SSPs is a subset of the original state space in which any state
s′ ∈ Ss,t is reachable from s using at most t actions. Given a short-sighted SSP Ss,t, we refer
to the states s′ ∈ Gs,t \ G as artificial goals and we denote the set of artificial goals by Ga, thus
Ga = Gs,t \ G.

The key feature of short-sighted SSPs that allows them to be used for solving SSPs is given
by the definition of Cs,t: every artificial goal state sa ∈ Ga has its heuristic value H(sa) added
to the cost of reaching sa. Therefore, the search for a solution to short-sighted SSPs is guided
towards the goal states of the original SSP, even if such states are not in Ss,t.

3.2.1 Properties

Since short-sighted SSPs are also SSPs, the optimal value function for Ss,t, denoted as V ∗Ss,t ,
is defined by (2.2). Although related, the V ∗Ss,t(s) and (BtH)(s), i.e., the t-look-ahead value
of s w.r.t. H (Section 2.1 p.12), are not the same. Before we formally prove their differences,
consider the 3-dominoes line problem depicted in Figure 3.1, depth t = 2, and the zero-heuristic
as H:

3.2 SHORT-SIGHTED STOCHASTIC SHORTEST PATH PROBLEMS 23

Goal

Goal

Initial

Figure 3.3: Example of look-ahead search tree for the 3-line dominoes problem (Figure 3.1). In
this example, the root of the search tree is the initial state s0 and the depth is t = 2. Ball-ended
lines represent a transition to the state in which the line is empty in the next level of the tree; this
transition happens with probability 0.9.

• The 2-look-ahead search from s0, (B2H)(s0), represents the minimum expected cost of
executing 2 actions in a row, therefore only trajectories of size 2 are considered. Figure 3.3
shows the search tree associated with (B2H)(s0). The resulting value is (B2H)(s0) = 2

that is obtained by applying any sequence of two place actions, since delegate has cost
9.

• The optimal value function for Ss0,2 on s0, V ∗Ss0,2(s0), is defined as the minimum expected
cost to reach a goal state in Ss0,2 (Figure 3.2(b)), i.e., a state in Gs0,2, from s0. Thus all
possible trajectories in Ss0,2 are considered and the maximum size of these trajectories is
unbounded due to the loops generated by the policy in which the action place is applied. In
this example, V ∗Ss0,2(s0) = 9 and the closed greedy policy w.r.t. V ∗Ss0,2 is to apply delegate

in the initial state.

Precisely, the difference between the look-ahead and short-sighted SSPs is in how the original
SSP is relaxed: look-ahead changes the indefinite horizon of the original SSP to a finite horizon;
and short-sighted SSPs prune the state space of the original SSP without changing the horizon.

In order to formally prove the relation between V ∗Ss,t(s) and (BtH)(s), we introduce Bs,t,
the Bellman operator B applied to the short-sighted SSP Ss,t. To simplify our proofs, we define
(Bs,tV)(ŝ) to be equal to 0 if ŝ ∈ Gs,t and,

(Bs,tV)(ŝ) = min
a∈A

[∑
s′∈Ss,t\Ga

P (s′|ŝ, a) [Cs,t(ŝ, a, s
′) + V (s′)] +

∑
s′∈Ga

P (s′|ŝ, a)Cs,t(ŝ, a, s
′)

]

for all ŝ ∈ Ss,t \ Gs,t. The only difference between the definitions of B and Bs,t is the explicit
treatment of the states sa ∈ Ga in the summation by Bs,t: V (sa) is not considered since sa is
an artificial goal of Ss,t. If V (sa) = 0 for all sa ∈ Ga, then BV = Bs,tV for Ss,t. Lemmas 3.1

24 CHAPTER 3: SHORT-SIGHTED PROBABILISTIC PLANNING

and 3.2 relate the operator B applied to an SSP S with operator Bs,t applied to the (s, t)-short-
sighted SSP Ss,t associated with S.

Lemma 3.1. Given an SSP S = 〈S, s0,G,A, P, C〉 that satisfies the Assumption 2.1, s ∈ S,

t ∈ N∗ and a monotonic value function V for S, then (Bk
s,tV)(ŝ) = (BkV)(ŝ) for all ŝ ∈ Ss,t\Ga

s.t. minsa∈Ga δ(ŝ, sa) ≥ k, where B and Bs,t represent, respectively, the Bellman operator

applied to S and Ss,t.

Proof. See Appendix.

Lemma 3.2. Under the same conditions of Lemma 3.1, (Bk
s,tV)(s) ≤ (BkV)(s) for all k ∈ N∗

and ŝ ∈ Ss,t, where B and Bs,t represent, respectively, the Bellman operator applied to S and

Ss,t.

Proof. See Appendix.

In Theorem 3.3, we prove that V ∗Ss,t(s) ≤ V ∗(s) and that V ∗Ss,t(s) is a lower bound for V ∗(s)
at least as tight as (BtH)(s) if H is a monotonic lower bound on V ∗ and Assumption 2.1 holds
for S. Corollary 3.4 shows that V ∗Ss,t(s) is always a tighter lower bound than (BtH)(s) if S has
unavoidable loops (Definition 3.3).

Theorem 3.3. Given an SSP S = 〈S, s0,G,A, P, C〉 that satisfies the Assumption 2.1, s ∈ S,

t ∈ N∗ and a monotonic lower bound H for V ∗, then

(BtH)(s) ≤ V ∗Ss,t(s) ≤ V ∗(s).

Proof. By the definition of Ss,t, minsa∈Ga δ(s, sa) = t. Therefore (BtH)(s) = (Bt
s,tH)(s) by

Lemma 3.1. Since H is a monotonic lower bound and V ∗Ss,t(s) = (limk→∞B
k
s,tH)(s), we have

that (BtH)(s) ≤ V ∗Ss,t(s). By Lemma 3.2, we have that V ∗Ss,t(s) ≤ V ∗(s).

Definition 3.3 (Unavoidable Loops). An SSP S = 〈S, s0,G,A, P, C〉 that satisfies the Assump-
tion 2.1 has unavoidable loops if, for every optimal policy π∗ of S, the directed graphG = (Sπ

∗
, E),

where E = {(s, s′)|P (s′|s, π∗(s)) > 0}, is not acyclic.

Corollary 3.4. In Theorem 3.3, if the (s, t)-short-sighted SSP Ss,t has unavoidable loops (Defi-

nition 3.3), then (BtH)(s) < V ∗Ss,t(s).

Proof. By definition, (BtH)(s) consider only trajectories of size at most t from s. By definition,
V ∗Ss,t(s) = limk→∞(Bk

s,tH)(s), then all possible trajectories on Ss,t are considered by V ∗Ss,t . By
assumption, Ss,t has unavoidable loops, therefore the maximum size of a trajectory generated

3.2 SHORT-SIGHTED STOCHASTIC SHORTEST PATH PROBLEMS 25

by π∗s,t is unbounded. Since every trajectory has non-zero probability and non-zero cost, then
(BtH)(s) = (Bt

s,tH)(s) < V ∗Ss,t(s).

Another important relation between SSPs and short-sighted SSPs is through their policies.
To formalize this relationship, we first define the concept of t-closed policy w.r.t. s, i.e., policies
that can be executed from s, independently of the probabilistic outcome of actions, for at least
t actions without replanning:

Definition 3.4 (t-closed policy). A policy π for an SSP S = 〈S, s0,G,A, P, C〉 is t-closed w.r.t. a
state s ∈ S if, for all s′ ∈ Rπ ∩ Sπ, δ(s, s′) ≥ t.

FF-Replan and its extensions (see Chapter 6) compute 1-closed policies w.r.t. the current
state, i.e., there is no guarantee that partial policy computed by them can be executed for more
than one action without replanning. Notice that, when t → ∞, t-closed policies w.r.t. s0 are
equivalent to closed policies. Proposition 3.5 gives an upper bound on t for when a t-closed
policy w.r.t. s0 becomes a closed policy.

Proposition 3.5. Given an SSP S = 〈S, s0,G,A, P, C〉, for t ≥ |S|, every t-closed policy w.r.t. s0
for S is also a closed policy for S.

Proof. Since π is t-closed w.r.t. s0 for t ≥ |S|, then, for all s′ ∈ Rπ ∩ Sπ, δ(s, s′) ≥ |S|. By
the definition of Sπ, we have that all s′ ∈ Sπ is reachable from s0 when following π. Thus
δ(s0, s

′) < |S|, since there exist a trajectory from s0 to s that visits each state at most once, i.e.,
that uses at most |S| − 1 actions. Therefore Rπ ∩ Sπ = ∅, i.e., π is a closed policy, since there
exists no s′ ∈ Sπ such that δ(s, s′) ≥ |S|.

Policies for SSPs and policies for their associated (s, t)-short-sighted SSPs are related through
the concept of t-closed policies w.r.t. s:

Proposition 3.6. Given an SSP S = 〈S, s0,G,A, P, C〉 and a state s ∈ S, π is a closed policy for

Ss,t if and only if π is a t-closed policy w.r.t. s for S.

Proof. We assume that π is a closed policy for Ss,t, i.e., Rπs,t ∩ Sπs,t = ∅. For contradiction
purposes, suppose that there exists s′ ∈ Rπ ∩ Sπ such that δ(s, s′) < t. Since δ(s, s′) < t, then
s′ ∈ Ss,t; thus s′ ∈ Sπs,t ⊆ Sπ and s′ ∈ Rπs,t ⊆ Rπ. This is a contradiction because Rπs,t ∩ Sπs,t = ∅,
therefore, for all s′ ∈ Rπ ∩ Sπ, δ(s, s′) ≥ t, i.e., π is t-closed w.r.t. s for S.

Now, we assume that π is t-closed w.r.t. s for S, i.e., for all s′ ∈ Rπ ∩ Sπ, δ(s, s′) ≥ t. By the
definition of Ss,t, we have that, for all s′ ∈ Ss,t, δ(s, ŝ) ≤ t. Thus, if s′ ∈ (Rπ ∩ Sπ) ∩ Ss,t, then
δ(s, s′) = t, i.e., s′ ∈ Gs,t \G. Since, by the definition of Rπ, Rπs,t ∩Gs,t = ∅ and Sπs,t = Sπ ∩ Ss,t,
then Rπs,t ∩ Sπs,t = ∅, i.e., π is a closed for Ss,t

26 CHAPTER 3: SHORT-SIGHTED PROBABILISTIC PLANNING

1 NON-LEARNING-PLANNER(SSPS = 〈S, s0,G,A, P, C〉, t ∈ N∗,H a heuristic forV ∗)
2 begin
3 s← s0
4 while s 6∈ G do
5 Ss,t← GENERATE-SHORT-SIGHTED-SSP(S, s,H, t)
6 πSs,t ← SSP-SOLVER(Ss,t)
7 while s 6∈ Gs,t do
8 s← APPLY-ACTION(πSs,t(s),s)

Algorithm 3.1: Non-learning algorithm to solve SSPs using short-sighted SSPs. Any proba-
bilistic planner can be used as SSP-SOLVER, e.g., value iteration, FF-Replan, and RTDP.

3.3 Short-Sighted Probabilistic Planner

We present a step towards the definition of our main probabilistic planner by describing its ba-
sic non-learning version. This algorithm, NON-LEARNING-PLANNER (Algorithm 3.1), is the
straightforward adaptation of Proposition 3.6: a short-sighted SSP is generated, solved and its
solution is applied in the original SSP (Lines 5 to 8); if an artificial goal is reached, then the
procedure is repeated.

NON-LEARNING-PLANNER makes no assumption about the algorithm used as SSP-SOLVER

(Line 6) and its behavior is highly dependant on the chosen algorithm to solve each short-
sighted SSP. For instance, consider the 3-dominoes line problem (Figure 3.1), FF-Replan as
SSP-SOLVER and H0 as heuristic, then, independently of the value of t and the current state
s, the solution returned by FF-Replan to Ss,t is always a sequence of place actions. There-
fore, NON-LEARNING-PLANNER using FF-Replan is unable to find the optimal solution for
3-dominoes line problem.

In order to illustrate the need for an algorithm that learns, i.e., improves the given heuristic
as execution (or simulation) is performed, consider the 3-dominoes line problem with the cost of
delegate changed from 9 to 11. If NON-LEARNING-PLANNER, using RTDP as SSP-SOLVER,
t = 1 and H0 as heuristic, is applied to this modification of the 3-dominoes line problem, then
after Ss0,1 (Figure 3.2(a)) is solved, we have that V ∗Ss0,1(s0) = 10 and a place action is chosen.
Every time that the initial state s0 is revisited, a high probability event since every place action
results in s0 with probability 0.9, the same bound is computed by RTDP, i.e., RTDP is reinvoked
to solve Ss0,1 generated using H0 as heuristic. Therefore, NON-LEARNING-PLANNER is unable
to infer that delegate is the optimal solution and always chooses a place action on s0.

3.3 SHORT-SIGHTED PROBABILISTIC PLANNER 27

1 SSIPP(SSP S = 〈S, s0,G,A, P, C〉, t ∈ N∗, H a heuristic for V ∗, ε > 0)
2 begin
3 V ← Value function for S with default value given by H
4 s← s0
5 while s 6∈ G do
6 Ss,t← GENERATE-SHORT-SIGHTED-SSP(S, s, V , t)
7 (π∗Ss,t , V

∗
Ss,t)← ε-OPTIMAL-SSP-SOLVER(Ss,t, V , ε)

8 foreach s′ ∈ S
π∗Ss,t \ Gs,t do

9 V (s′)← V ∗Ss,t(s
′)

10 while s 6∈ Gs,t do
11 s← APPLY-ACTION(π∗Ss,t(s),s)

12 return V
Algorithm 3.2: Short-Sighted Probabilistic Planner (SSiPP). Any SSP ε-optimal solver can be
used as ε-OPTIMAL-SSP-SOLVER, e.g., value iteration and RTDP. Notice that V ∗Ss,t returned
by ε-OPTIMAL-SSP-SOLVER needs to be defined only for the states reachable from s when
following π∗Ss,t , i.e., for s′ ∈ S

π∗Ss,t .

Short-Sighted Probabilistic Planner (SSiPP), presented in Algorithm 3.2, overcomes the draw-
backs of NON-LEARNING-PLANNER by maintaining a lower bound V for V ∗ that is updated ac-
cording to the optimal solution of the generated short-sighted SSPs (Lines 8 and 9). 1 The lower
bound V is initialized by the input heuristic H (Line 3) using a lazy approach, i.e., if the value
V (s) is requested and V is not defined on s, then H(s) is computed (on demand) and assigned
to V (s).

Due to the reduced state space of short-sighted SSPs, it possible to compute the ε-optimal
solution of each Ss,t efficiently (Line 7) and the obtained policy π∗Ss,t is a t-closed policy w.r.t. the
current state s for original SSP S (Proposition 3.6). Therefore π∗Ss,t can be simulated or directly
executed in the environment (Line 11) for at least t steps before replanning is needed, i.e., before
another short-sighted SSP is generated and solved.

To illustrate the execution of SSiPP, let us revisit the modified 3-dominoes lines problem
in which delegate has cost 11. For this example, consider SSiPP using RTDP as OPTIMAL-
SOLVER, t = 1 and H0 as heuristic, i.e., initially V (s) = 0 for all s ∈ S (Line 3). The first short-
sighted SSP generated and solved is Ss0,1 (Figure 3.2(a)) and, after Line 8 is executed, we have
that V (s0) = 10. Since delegate costs 11, a place action is chosen and applied until the current
state s changes from s0 to a state s′ 6= s0. Denote this chosen action as a. Once s′ is reached, Ss′,1
is generated, solved and V (s′) is updated to a value greater than zero since s′ is not a goal state of

1SSiPP is pronounced as the word “sip.”

28 CHAPTER 3: SHORT-SIGHTED PROBABILISTIC PLANNING

1 RUN-SSIPP-UNTIL-CONVERGENCE(SSP S = 〈S, s0,G,A, P, C〉, t ∈ N∗, H a heuristic
for V ∗, ε > 0)

2 begin
3 V ← Value function for S with default value given by H
4 while R(S, V) > ε do
5 V ← SSIPP(S, t,V , ε)

6 return V
Algorithm 3.3: Algorithm to compute an ε-approximation of V ∗ using SSiPP (Algorithm 3.2).

the original problem. When the state s0 is revisited for the first time, the expected cost of applying
a in Ss0,1 using V as heuristic equals 0.9(1 + V (s0)) + 0.1(1 + V (s′)) = 10 + 0.1V (s′) > 10

since V (s′) > 0. Therefore action a is not chosen since the expected cost of applying any of the
remaining two place actions in s0 is 10. As we prove in the next section, this process continues
and the optimal solution is found.

3.3.1 Guarantees

In this section, we prove that: SSiPP performs Bellman backups (Theorem 3.7); SSiPP termi-
nates (Theorem 3.8); and Algorithm 3.3 is asymptotically optimal (Theorem 3.9), that is, if the
same problem is solved sufficiently many times by SSiPP, then the optimal policy is found.

Theorem 3.7. Given an SSP S = 〈S, s0,G,A, P, C〉 such that the Assumption 2.1 holds, and a

monotonic lower bound H for V ∗, then the loop in Line 8 of SSiPP (Algorithm 3.2) is equivalent

to applying at least one Bellman backup on V for every state s′ ∈ S
π∗Ss,t \ Gs,t.

Proof. Let Ŝ denote S
π∗Ss,t \ Gs,t. After the loop in Line 8 is executed, we have that, for all

s′ ∈ Ŝ, V (s′) equals V ∗Ss,t(s
′). Thus, we need to prove that, (BV)(s′) ≤ V ∗Ss,t(s

′) ∀s′ ∈ Ŝ,
since V is monotonic and admissible (Theorem 2.1). By the definition of short-sighted SSP
(Definition 3.2), every state s′ ∈ Ŝ is such that {s′′ ∈ S|P (s′′|s′, a) > 0, ∀a ∈ A} ⊆ Ss,t,
i.e., the states reached after applying an action in a state s′ ∈ Ŝ belong to Ss,t. Therefore,
(BV)(s′) = (Bs,tV)(s′) ∀s′ ∈ Ŝ, whereBs,t is the Bellman operatorB for Ss,t. Since V is mono-
tonic and admissible, (Bs,tV)(s′) ≤ V ∗Ss,t(s

′). Therefore, (BV)(s′) ≤ V ∗Ss,t(s
′) ∀s′ ∈ Ŝ.

Theorem 3.8. SSiPP always terminates under the same conditions of Theorem 3.7.

Proof. Suppose SSiPP does not terminate. Then, there exists a trajectory T of infinite size that
can be generated by SSiPP. Since S is finite, then there must be an infinite loop in T and, for all
states s in this loop, V (s) diverges as the execution continues. Because Assumption 2.1 holds

3.4 THE n-DOMINOES LINE PROBLEM 29

for S, we have that V ∗(s) <∞ for all s ∈ S. A contradiction since SSiPP maintains V , initialized
as H , admissible and monotonic (Theorems 3.3 and 3.7), i.e., V (s) ≤ V ∗(s) for all s ∈ S.

Theorem 3.9. Given an SSP S = 〈S, s0,G,A, P, C〉 such that the Assumption 2.1 holds, a mono-

tonic lower bound H for V ∗, and t ∈ N∗, then the sequence 〈V 0, V 1, · · · , V k〉, where V 0 = H

and V i = SSiPP(S, t, V i−1), converges to V ∗ as k →∞ for all s ∈ Sπ
∗
.

Proof. Let the sequence of states H = 〈s0, s1, s2, . . .〉 be the concatenation of the trajectories Ti
of states visited by SSiPP when V i is computed. By Theorem 3.8, Ti has finite size, therefore
|H| is finite. Since Assumption 2.1 holds for S and H is admissible and monotonic, when
k → ∞, we can construct an SSP S∞ = 〈S∞, s0,G∞, A∞, P, C〉 such that [Barto et al., 1995,
Theorem 3, p. 132]: S∞ ⊆ S is the non-empty set of states that appear infinitely often in H;
G∞ ⊆ G is the non-empty set of goal states that appear infinitely often in H; and A∞ ⊆ A is
the set of actions a such that P (s′|s, a) = 0 for all s ∈ S∞ and s′ ∈ S \ S∞. Therefore, there
is a finite time step T such that the sequence H′ of states visited after time step T contains only
states in S∞. By Theorem 3.7, we know that at least one Bellman backup is applied to sj for
any time step j. Thus, after time step T , the sequence of Bellman backups applied by SSiPP is
equivalent to asynchronous value iteration on S∞ and V k(s) converges V ∗(s) for all s ∈ S∞ as
k → ∞ [Bertsekas and Tsitsiklis, 1996, Proposition 2.2, p. 27]. Furthermore, Sπ∗ ⊆ S∞ [Barto
et al., 1995, Theorem 3].

3.4 The n-Dominoes Line Problem

In this section, we generalize the 3-dominoes line problem to any number of dominoes (Ex-
ample 3.1). The obtained series of problems, the n-dominoes line problems, has characteris-
tics that illustrate the benefits of short-sighted planning as the the parameters of the problem
varies [Veloso and Blythe, 1994]. Precisely, we illustrate the trade-offs of short-sighted planning
by analyzing how the cost of delegate and the failure probability of the actions place influ-
ence the solutions for the n-dominoes line problems. Then we present an empirical comparison
between RTDP, FF-Replan and SSiPP in the n-dominoes line problems for different parameters.

Example 3.1 (n-dominoes line). Informally, given n dominoes, the goal of this problem is to
build a line using all the dominoes. The actions place(i), for i ∈ {0, . . . , n − 1}, represent
placing a domino in the position i of the line being built. Every action place(i) has cost 1 and
can fail with probability 1 − p, in which case all the dominoes already placed are dropped and
the line needs to be rebuild from scratch. If the domino line is empty, the action delegate can
be applied. Delegate costs k and deterministically builds the n-dominoes line.

30 CHAPTER 3: SHORT-SIGHTED PROBABILISTIC PLANNING

action: ai
pre: ¬li
with probability p:
add: li
del: ∅

with probability 1− p:
add: ∅
del: l0, · · · , ln−1

cost: 1
(a)

action: d
pre: ¬l0, · · · ,¬ln−1
add: l0, · · · , ln−1
del: ∅
cost: k

(b)

Figure 3.4: Definition of the actions in the n-dominoes line problems. Actions ai (place(i)) and
d (delegate) are presented using probabilistic STRIPS in (a) and (b) respectively.

Formally, we represent the domino line using the binary state variables l0, · · · , ln−1 where li
is true if there is a domino at position i of the line. We denote the actions place(i) by ai and
delegate by d. Figure 3.4 shows the formal definition of ai and d. In the initial state s0, all the
state variables are false and the goal set G equals {sG} where sG is the state in which all state
variables are true.

The n-dominoes line problem has n! + 1 closed policies: πd, that selects action d on s0; and
the n! policies representing the permutations of πa = (a0, a1, · · · , an−1), where ai+1 is applied
when ai succeeds, i.e., results in a state s 6= s0. Notice that every permutation of πa results in
the same overall policy in which the dominoes line is built one piece at the time. Since every
action ai has the same probability p of succeeding, in which case li is changed from false to true,
same probability of returning to the initial state and same cost, then every permutation of πa has
the same expected cost V πa(s0) to reach the goal from the initial state.

In order to compute V πa(s0), consider the recurrence T (i) which represents the expected
cost of solving the problem of size n by using πa when there are only i dominoes missing in the
line. Clearly, T (0) = 0 since the dominoes line is done when no domino is missing in the line.
Moreover, we have V πa(s0) = T (n), because the domino line is empty in the initial state. Since
the domino line is constructed by adding one domino at each time step, then, for i ∈ {1, · · · , n},
we have that T (i) = 1 + (1− p)T (n) + pT (i− 1). Let cx:y denote

∑y
j=x p

j . By unrolling T (i),
we get T (i) = c0:i−1 + c0:i−1(1− p)T (n) for i ∈ {1, · · · , n}, therefore

V πa(s0) = T (n) = c0:n−1 + c0:n−1(1− p)V πa(s0) =
c0:n−1
pn

=
n−1∑
j=0

pj−n.

Since d is deterministic and has cost k, we have that V πd(s0) = k, thus πd is the only optimal
policy for the n-dominoes line problem when k < V πa(s0) =

∑n−1
j=0 p

j−n.

3.4 THE n-DOMINOES LINE PROBLEM 31

1 2 3 4 5 6 7 8 9 10

10
0

10
1

10
2

10
3

10
4

10
5

Value of i

N
u

m
b

e
r

o
f

a
c
ti
o

n
s
 t

o
 r

e
a

c
h

 t
h

e
 g

o
a

l
(l
o

g
−

s
c
a

le
)

Number of actions applied in order to reach the goal in the 10−dominoes line problem

SSiPP t=1 SSiPP t=2 SSiPP t=3 SSiPP t=4 SSiPP t=5 RTDP Trial FF−Replan

Figure 3.5: Average and 95% confidence interval for the number of actions to reach the goal of
the 10-dominoes line problem. For this experiment, 100 samples were used and the parameter p
of the dominoes line problem equals 0.5 Given a value of i in the x-axis, the cost of delegate
equals

∑i−1
j=0 0.5j−i − 1, i.e., the expected cost of building a line of i dominoes decreased by 1.

FF-Replan performance is constant because it always apply the same policy regardless the cost
of delegate.

To demonstrate the trade-offs of SSiPP, consider the expected cost V πa
Ss0,t

(s0) of πa applied in
the first short-sighted SSP solved by SSiPP, i.e., Ss0,t using H0 as heuristic. If t ≥ n, then
Ss0,t equals the original problem, because all the states can be reached using at most n ac-
tions; thus V πa

Ss0,t
(s0) = V πa(s0). For t < n, every artificial goal of Ss0,t represents a line

of t dominoes and V πa
Ss0,t

(s0) = T (t) =
∑t−1

j=0 p
j−t since H0(s) = 0 for all s ∈ Ga. Therefore,

if k < V πa
Ss0,t

(s0) =
∑t−1

j=0 p
j−t, then SSiPP using the parameter t always selects πd, which is also

the optimal solution for the original problem; moreover, at most |Ss0,t| = 1 +
∑t

i=0

(
n
i

)
states

are visited, i.e., all the states necessary to build a line of t dominoes using n dominoes plus the
original goal state, while the original problem has 2n states.

WhenV πa
Ss0,t

(s0) ≤ k < V πa(s0), SSiPP can still infer that πd is the optimal solution efficiently.
We illustrate this case by empirically comparing RTDP-TRIAL (Algorithm 2.1 Line 7), FF-Replan
and SSiPP for different values of t. Figure 3.5 shows the number of actions to reach the goal in
the 10-dominoes line problem for p = 0.5 as a function of k. Each value of k considered equals
V πa
Ss0,i

(s0)− 1, where i is the x-axis of Figure 3.5. Therefore, for i ∈ {1, · · · , 10}, πd is the optimal
solution and SSiPP using t ≤ i always choosesπd, i.e., solves the problem using only one action.

32 CHAPTER 3: SHORT-SIGHTED PROBABILISTIC PLANNING

3.5 Summary
In this chapter, we described short-sighted Stochastic Shortest Path Problems (short-sighted
SSPs), the main concept for short-sighted probabilistic planning. We then formally proved the
properties of the solutions of short-sighted SSPs, in particular that, under common assumptions,
it is a lower bound on the solution of the original problem. Moreover, we showed that a closed
policy for an (s, t)-short-sighted SSP can be executed for at least t steps from s in the original
SSP without replanning.

We also introduced Short-Sighted Probabilistic Planner (SSiPP), an algorithm that solves
probabilistic planning problems by iteratively solving short-sighted SSPs and using their optimal
solutions to update the lower bound on the optimal solution of the original SSP. We formally
proved that, under common assumptions, SSiPP always reaches a goal state of the original prob-
lem and, if the same problem is solved sufficiently many times by SSiPP, then the optimal policy
is found. Using the n-dominoes line problems introduced in this chapter, we illustrated how
SSiPP is able to efficiently compute the solution of probabilistic planning problems.

In the next chapter, we extend the concept of short-sighted SSP by changing how states are
pruned, e.g., we use the probability of reaching a state instead of the action-distance function δ.
Chapter 5 presents extensions of SSiPP to incorporate other techniques from the probabilistic
planning community, e.g., labeling of converged states and determinizations.

Chapter 4

General Short-Sighted Models

In this chapter, we extend the definition of depth-based short-sighted SSPs. We begin by intro-
ducing trajectory-based short-sighted SSPs, in which states that have low probability of being
reached are pruned from the state space [Trevizan and Veloso, 2012b]. Next, in Section 4.2, we
present greedy short-sighted that uses only the best k states according the current bound on V ∗

and their probability of being reached as state space. In Section 4.3, we prove a set of sufficient
conditions under which SSiPP always terminates and is asymptotically optimal [Trevizan and
Veloso, 2012b].

4.1 Trajectory-Based Short-Sighted SSPs

To motivate the definition of trajectory-based short-sighted SSPs, consider the SSP shown in Fig-
ure 4.1. In this example, there are two closed policies, π0 = {(s0, a0), (s′1, a0), (s′2, a0), (s′3, a0)}
and π1 = {(s0, a1), (s1, a1), (s2, a1), (s3, a1)}, representing, the bottom and top chains, respec-
tively. Optimal policy π∗ is π0 because, both a0 and a1 have the same cost independently of
their outcomes, the length of both chains is the same and a0 has a lower self-loop probability,
i.e., P (s′i|s′i, a0) < P (si|si, a1).

Figure 4.2 depicts the (s0, t)-depth-based short-sighted SSPs (Definition 3.2) associated with
the example in Figure 4.1. For this example, the state space Ss0,t of the (s0, t)-depth-based
short-sighted SSP contains t states of both chains because depth-based short-sighted SSPs ignore
probabilities for the generation of Ss0,t. In the next section, we introduce trajectory-based short-
sighted SSPs, a new class of short-sighted SSPs that prunes states based on their probability of
being reached as opposed to their distance.

33

34 CHAPTER 4: GENERAL SHORT-SIGHTED MODELS

s
1

’ s
2

’ s
3

’

s
2

s
1

s
0

s
3

s
G

.4

.6

.4

.6

.4

.6

a
0

a
1

.75
.75 .75 .75

.25

.25.25

.6

.4

.25

Figure 4.1: Example of SSP to motivate the definition of trajectory-based short-sighted SSPs.
The initial state is s0, the goal set is G = {sG}, C(s, a, s′) = 1, ∀s ∈ S, a ∈ A and s′ ∈ S.

.75

.25

s
1

.4

.6

s
0

s
1

’

.25

(a) t = 1

.75
.75

.25

.25

s
0

.4

.6

s
1

s
2.4

.6

s
2

’
s

1

’

(b) t = 2

.75
.75 .75

.25.25

.25

s
0

.4

.6

s
1

s
2

s
3.4

.6

.4

.6

s
2

’ s
3

’
s

1

’

(c) t = 3

Figure 4.2: Examples of (s0, t)-depth-based short-sighted SSPs for the SSP in Figure 4.1. For
t ≥ 4, the (s0, t)-depth-based short-sighted SSP equals the original SSP.

4.1.1 Definition

Trajectory-based short-sighted SSPs (Definition 4.2) address the issue of states with low proba-
bility of being reached by explicitly defining its state space Ss,ρ based on the maximum proba-
bility Pmax(s, s

′) of a trajectory starting at s and stopping at s′:

Definition 4.1 (Pmax(s, s
′)). The maximum trajectory probability between two states s and s′ is:

Pmax(s, s
′) =

1 if s = s′

0 if s 6= s′ and s ∈ G

max
ŝ∈S,a∈A

P (ŝ|s, a)Pmax(ŝ, s
′) otherwise

.

Definition 4.2 (Trajectory-Based Short-Sighted SSP). Given an SSP S = 〈S, s0,G,A, P, C〉,
a state s ∈ S, ρ ∈ [0, 1] and a heuristic H , the (s, ρ)-trajectory-based short-sighted SSP
Ss,ρ = 〈Ss,ρ, s,Gs,ρ,A, P, Cs,ρ〉 associated with S is defined as:

• Ss,ρ = {s′ ∈ S|∃ŝ ∈ S and a ∈ A s.t. Pmax(s, ŝ) ≥ ρ and P (s′|ŝ, a) > 0};

• Gs,ρ = (G ∩ Ss,ρ) ∪ (Ss,ρ ∩ {s′ ∈ S|Pmax(s, s
′) < ρ});

4.1 TRAJECTORY-BASED SHORT-SIGHTED SSPS 35

.75

.25

s
1

.4

.6

s
0

s
1

’

.25

(a) ρ = 1.0

.75
.75

.25

.25

s
1

.4

.6

s
0

s
1

’ s
2

’

(b) ρ ∈ [0.75, 1.0)

.75
.75 .75

.25.25

.25

s
1

.4

.6

s
0

s
1

’ s
2

’ s
3

’

(c) ρ ∈ [0.752, 0.75)

.75
.75 .75 .75

.25

.25.25

.25

s
1

.4

.6

s
0

s
1

’ s
2

’ s
3

’

s
G

(d) ρ ∈ [0.753, 0.752)

Figure 4.3: Examples of (s0, ρ)-trajectory-based short-sighted SSPs for the SSP in Figure 4.1.

• Cs,ρ(s′, a, s′′) =

C(s′, a, s′′) +H(s′′) if s′′ ∈ Gs,ρ

C(s′, a, s′′) otherwise
, ∀s′ ∈ Ss,ρ, a ∈ A, s′′ ∈ Ss,ρ

For simplicity, when H is not clear by context nor explicit, then H(s) = 0 for all s ∈ S.

Figure 4.3 shows, for values of ρ ∈ [0.753, 1], the trajectory-based Ss0,ρ for the SSP in Fig-
ure 4.1. For instance, if ρ = 0.753 (Figure 4.3(d)) then Ss0,0.753 = {s0, s1, s′1, s′2, s′3, sG} and
Gs0,0.75 = {s1, sG}. The case shows ρ = 0.753 how trajectory-based short-sighted SSP can be
more efficient in managing uncertainty efficiently: |Ss0,ρ| = 6 and the goal of the original SSP
sG is already included in Ss0,ρ while, for the depth-based short-sighted SSPs, sG ∈ Ss0,t only for
t ≥ 4 case in which |Ss0,t| = |S| = 8.

Notice that the definition of Ss,ρ cannot be simplified to {ŝ ∈ S|Pmax(s, ŝ) ≥ ρ} since not
all the resulting states of actions would be included in Ss,ρ. For example, consider the SSP in
Figure 4.4(a); the set of states S′ = {ŝ ∈ S|Pmax(s0, ŝ) ≥ ρ} = {s0, sH} for all ρ ∈ (0.1, 0.9].
Therefore, if we use S′ to generate a short-sighted SSP, an invalid SSP would be obtained (Fig-
ure 4.4(c)) because action a is included in the model and sL, an effect of a with non-zero proba-
bility, is not in the state space S′.

4.1.2 Triangle Tire World

In this section, we use the triangle tire world [Little and Thiébaux, 2007] series of problems to
show the advantage of trajectory-based short-sighted SSPs. In the triangle tire world problems,

36 CHAPTER 4: GENERAL SHORT-SIGHTED MODELS

s

s
0

s
G

.9

.1

H

s
L

(a)

s

s
0

.9

.1

H

s
L

(b)

s

s
0

.9

.1

H

?

(c)

Figure 4.4: Example of why the definition of Ss,ρ cannot be simplified. (b) (s0, 0.8)-trajectory-
based short-sighted SSP associated with SSP in (a). (c) Ill-defined SSP obtained when
S′ = {ŝ ∈ S|Pmax(s0, ŝ) ≥ 0.8} = {s0, sH}: the state sL is reachable however sL 6∈ S′.

a car has to travel between locations in order to reach a goal location from its initial location.
Every time the car moves between locations, a flat tire happens with probability 0.5. The car
carries only one spare tire which can be used at anytime to fix a flat tire. Once the spare tire is
used, a new one can be loaded into the car; however, only some locations have an available new
tire to be loaded. The actions load-tire and change-tire, are deterministic.

The roads between locations are one-way only and the roadmap is represented as a directed
graph in a shape of an equilateral triangle. Each problem in the triangle tire world is represented
by a number n ∈ N∗ corresponding to the roadmap size. Figure 4.5(a) illustrates the roadmap
for the problems 1, 2 and 3 of the triangle tire world. The initial and goal locations, l0 and lG
respectively, are in two different vertices of the roadmap and their configuration is such that:

• the shortest path policy from l0 and lG has probability 0.52n−1 of reaching the goal; and

• the only proper policy, and therefore the optimal policy, is the policy that takes the longest
path.

Moreover, every triangle tire world problem is a probabilistic interesting problem [Little
and Thiébaux, 2007] because only the optimal policy reaches the goal with probability 1. This
property is illustrated by the shades of gray in Figure 4.5(a) that represents, for each location l,
maxπ P (car reaches l and the tire is not flat when following the policy π from s0). Figure 4.5(b)
shows the size of the state space S and |Sπ|, i.e., the number of states reachable from s0 when
following the optimal policy π∗, for problems up to n = 60.

Since the only proper policy is not complete, Assumption 2.1 does not hold for the triangle
tire world problems, i.e., they contain avoidable dead ends. All dead ends of triangle tire world
problems are states in which the tire is flat and there is not spare tire. Since the car cannot move
when the tire is flat, these dead ends are states in which no action is available. Therefore, planners
can trivially detect when a dead end sd is reached, in which case V (sd) is updated to infinity. In

4.1 TRAJECTORY-BASED SHORT-SIGHTED SSPS 37

(a)

0 5 10 15 20 25 30 35 40 45 50 55 60
10

0

10
10

10
20

10
30

10
40

10
50

10
60

10
70

10
80

Triangle Tireworld Problem Size

N
u
m

b
e
r

o
f
S

ta
te

s
 (

lo
g
 s

c
a
le

)

|S(π*,s
0
)|

|S|

(b)

Figure 4.5: Map and state space statistics of the triangle tire world. (a) Roadmap of the triangle
tire world for the sizes 1, 2 and 3. Circles (squares) represent locations in which there is one (no)
spare tire. In the initial state the car is at l0 and the tire is not flat; the goal is to reach location
lG. The shades of gray represent, for each location l, maxπ P (car reaches l and the tire is not flat
when following the policy π from s0). (b) Log-lin plot of the state space size (|S|) and the size
of the states reachable from s0 when following the optimal policy π∗ (|Sπ∗|) versus the number
of the triangle tire world problem.

38 CHAPTER 4: GENERAL SHORT-SIGHTED MODELS

1 RUN-SSIPP(SSP S = 〈S, s0,G,A, P, C〉, t ∈ N∗, H a heuristic for V ∗, ε > 0)
2 begin
3 V ← Value function for S with default value given by H
4 g ← 0
5 for i ∈ {1, . . . , k} do
6 V ← SSIPP(S, t,V , ε)
7 if SSiPP reached the goal then
8 g ← g + 1

9 return g
Algorithm 4.1: Algorithm to run SSiPP (Algorithm 3.2) k times reusing the inferred bound V .

practice, the value assigned to V (sd) can be any value larger than 12n because V ∗(s0) < 12n for
the triangle tire world problem of size n.

Next, we compare SSiPP using depth-based and trajectory-based short-sighted SSPs in order
to solve triangle tire world problems. Up to this point, we have not proved that SSiPP terminates
(or converges) when trajectory-based short-sighted are used instead of depth-based short-sighted
SSPs. In Section 4.3, we prove that SSiPP terminates and is optimal for a class of short-sighted
SSPs that includes trajectory-based short-sighted SSPs.

Due to the large size of Sπ∗ (Figure 4.5(b)), it is infeasible to run SSiPP until ε-convergence
(Algorithm 3.3). Thus, we evaluate depth-based and trajectory-based short-sighted SSPs using
Algorithm 4.1 for k = 50, i.e., we run SSiPP 50 times reusing the inferred lower bound (Line 6).
Our evaluation metric is the valued returned by Algorithm 4.1, i.e., the number of iterations of
SSiPP that reached the goal. Because of the dead ends, not all executions of SSiPP might reach
the goal, thus the performance of each planner is a number between 0 and 50.

Table 4.1 presents the average of 10 runs of Algorithm 4.1 for depth-based and trajectory-based
short-sighted SSPs. We used the zero heuristic for both models, t = 8 for depth-based short-sighted
SSPs, and ρ ∈ {0.125, 0.25, 0.5} for trajectory-based short-sighted SSPs. For trajectory-based, we
also considered an exploration budget approach, i.e., we fix the total number of states in Ss,ρ to be
approximately the same as in the depth-based short-sighted SSP for t = 8 and state s. Formally,
before Ss,ρ is computed in Algorithm 3.2 Line 6, we compute the state space |Ŝ| of the (s, 8)-depth-
based short-sighted SSP and choose ρ = argmaxρ{|Ss,ρ| s.t. |Ss,ρ| ≤ |Ŝ|}. Since Ŝ depends on the
current state s, the value of ρ might differ for each Ss,ρ generated to solve a given SSP.

All the parametrizations of SSiPP using trajectory-based outperforms SSiPP using depth-
based short-sighted SSPs. SSiPP using trajectory-based and ρ ∈ {0.5, 0.125} is especially note-
worthy because it achieves the perfect score in all problems, i.e., it reaches a goal state in all the
50 iterations in all the 10 runs for all the problems. This interesting behavior of SSiPP using

4.1 TRAJECTORY-BASED SHORT-SIGHTED SSPS 39

Triangle Tireworld Problem Number
Short-Sighted Model 5 10 15 20 25 30 35 40 45 50 55 60

Depth t = 8 44.6 43.3 43.1 43.3 43.7 43.7 42.9 42.5 42.1 37.8 16.3 -
Trajectory w. budget 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Trajectory ρ = 0.50 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Trajectory ρ = 0.25 48.6 47.3 45.4 44.6 44.6 45.1 44.1 44.9 44.2 43.9 43.8 43.4
Trajectory ρ = 0.125 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Table 4.1: Performance comparison between depth-based and trajectory based short-sighted
SSPs for the triangle tire world. Each value represents the average over 10 runs of Algorithm 4.1.
For depth-based short-sighted SSPs, the parameter t equals 8; for trajectory-based short-sighted
SSPs, different values of ρ and a budget approach are considered. The 95% confidence interval
is less than 2.0 in all the obtained results, except for depth-based in problem 55, in which case it
is 6.29. Best results shown in bold font.

trajectory-based short-sighted SSPs for the triangle tire world can be explained by the following
theorem:

Theorem 4.1. For the triangle tireworld, SSiPP using trajectory-based short-sighted SSPs and

an admissible heuristic never falls in a dead-end for ρ ∈ (0.5i+1, 0.5i] and i ∈ {1, 3, 5, . . . }.

Proof. The optimal policy for the triangle tire world is to follow the longest path: move from
the initial location l0 to the goal location lG passing through location lc, where l0, lc and lG are
the vertices of the triangle formed by the problem’s roadmap (Figure 4.5(a)). The path from lc to
lG is unique, i.e., there is only one applicable move-car action for all the locations in this path.
Therefore all the decision making to find the optimal policy happens between the locations l0 and
lc. Each location l′ in the path from l0 to lc has either two or three applicable move-car actions
and we refer to the set of locations l′ with three applicable move-car actions as N.

Every location l′ ∈ N is reachable from l0 by applying an even number of move-car actions
and the three applicable move-car actions in l′ are: (i) the optimal action ac, i.e., move the car
towards lc; (ii) the action aG that moves the car towards lG; and (iii) the action ap that moves the
car parallel to the shortest-path from l0 to lG. The location reached by ap does not have a spare
tire, therefore ap is never selected since it reaches a dead-end with probability 0.5. The locations
reached by applying either ac or aG have a spare tire and the greedy choice between them depends
on the admissible heuristic used, thus aG might be selected instead of ac. However, after applying
aG, only one move-car action a is available and it reaches a location that does not have a spare
tire. Therefore, the greedy choice between ac and aG considering two or more move-car actions is
optimal under any admissible heuristic: every sequence of actions 〈aG, a, . . . 〉 reaches a dead-end
with probability at least 0.5 and at least one sequence of actions starting with ac has probability
0 to reach a dead-end, e.g., the optimal solution.

40 CHAPTER 4: GENERAL SHORT-SIGHTED MODELS

Given ρ, we denote as Ls,ρ the set of all locations corresponding to states in Ss,ρ and as ls
the location corresponding to the state s. Thus, Ls,ρ contains all the locations reachable from ls

using up to m = blog0.5 ρc + 1 move-car actions. If m is even and ls ∈ N, then every location
in Ls,ρ ∩ N represents a state either in Gs,ρ or at least two move-car actions away from any state
in Gs,ρ. Therefore the solution of the (s, ρ)-trajectory-based short-sighted SSP only chooses the
action ac to move the car. Also, since m is even, every state s used by SSiPP for generating
(s, ρ)-trajectory-based short-sighted SSPs has ls ∈ N. Therefore, for even values of m, i.e., for
ρ ∈ (0.5i+1, 0.5i] and i ∈ {1, 3, 5, . . . }, SSiPP using trajectory-based short-sighted SSPs and ρ
always chooses the actions ac to move the car to lc, thus avoiding all the dead-ends.

4.2 Greedy Short-Sighted SSPs

To motivate the definition of greedy short-sighted SSPs, consider the SSP shown in Figure 4.6(a).
In this example, the state space represents a full binary tree of depth 3, with nodes labeled from
1 to 15, incremented with a special state r. The initial state is s0 = 1, i.e., the root of the binary
tree, and the goal is to reach the leaf represented by node 13, i.e., G = {13}. Three actions are
available in every non-leaf node of the binary tree: left, right and random. The action random

has cost 1 and moves to the left (right) branch of the tree with probability 0.5. The action left

(right) has cost 5 and moves to the left (right) branch of the tree with probability 0.9; with
probability 0.1, left (right) fails and moves to the right (left) branch of the tree.

For all the leaves of the binary different of the goal leaf 13, the action restart is available
and it deterministically transition to the state r. In state r, the action restart deterministically
moves to the root node of the binary tree. restart has cost 1 when applied on a tree leaf or on r.
Therefore, if the goal leaf 13 is not reached, the agent restarts the search from the root node 1;
this process is repeated until the goal leaf is reached.

Figure 4.6(b) shows the (s0, 2)-depth-based short-sighted SSP associated with the SSP in
Figure 4.6(a); this depth-based short-sighted SSP is equivalent to the (s0, ρ)-trajectory-based
short-sighted SSP for ρ ∈ (0.92, 0.9]. Notice that state space and goal set of the short-sighted
SSP in Figure 4.6(a) is the same independently of the heuristic H used as parameter, e.g., the
zero heuristic.

The reason for the state space and goal set being independent of the heuristic H in depth-
based and trajectory-based short-sighted SSPs is because H is used only for incrementing the
cost of reaching artificial goals. In the next section, we introduce greedy short-sighted SSPs, a
new short-sighted model that prunes states based on their heuristic cost of reaching the goal.

4.2 GREEDY SHORT-SIGHTED SSPS 41

r

1

8

4

9

0.5 0.5

0.9 0.9

10

5

11

0.5 0.5

0.9 0.9

20.9 0.9

0.5 0.5

12

6

13

0.5 0.5

0.9 0.9
7

1514

0.5 0.5

0.9 0.9

30.9 0.9

0.5 0.5

0.9 0.9

0.5 0.5

(a)

0.9 0.9

0.5 0.5

0.9 0.9

0.5 0.5

0.9 0.9

0.5 0.5

1

2 3

4 5 6 7

(b)

Figure 4.6: Example of an SSP to motivate the definition of greedy short-sighted SSPs. (a)
Example of an SSP. The initial state s0 is the node 1, the goal set is G = {13}. Actions random
and restart cost 1 and are represented by solid black and dashed black arrows respectively.
Actions left (green arrows) and right (blue arrows) cost 5 and succeed with probability 0.9.
left (right) fails with probability 0.1 by moving to right (left) branch of the tree (this effect
is omitted in the picture for ease of presentation). (b) (s0, 2)-depth-based and (s0, ρ)-trajectory-
based, for ρ ∈ (0.92, 0.9], short-sighted SSP associated with the SSP in (a).

4.2.1 Definition

Algorithm 4.2 presents our approach to generate a short-sighted state space that takes into ac-
count a given heuristic H . This algorithm performs a best-first search from the given state s
using as node expansion criterion the fringe node s′ that minimizes H(s′)/Pmax(s, s

′), i.e., the
heuristic value of s′ divided by the maximum trajectory probability between s and s′ (Defini-
tion 4.1). The search fringe is stored in the priority queue Q, in which the next state to be popped
minimizes the expansion criterion, and Q is initialized with the input state s (Lines 3 to 6). Once
a state ŝ 6∈ G is popped from Q (Line 10), then: (i) ŝ is removed from the short-sighted SSP goal
set Gs,k (Line 14), i.e., ŝ is not considered as an artificial goal anymore; and (ii) ŝ is expanded
(Lines 15 to 19), i.e., all states s′ such that there exists a ∈ A and P (s′|s, a) > 0 are added to Q.

The search performed by Algorithm 4.2 terminates once Ss,k contains k or more states
(Line 8). In order to guarantee that all effects of actions applied to states in Ss,k \ Gs,k be-
long to Ss,k (Figure 4.4), Algorithm 4.2 might increase the size of Ss,k beyond k by adding more
states, all of them as artificial goals. Therefore, we have that |Ss,k \ Gs,k| < k, since |Gs,k| > 0.

Definition 4.3 formalizes the (s, k)-greedy short-sighted SSPs, where k is the size of the
generated short-sighted state space.

42 CHAPTER 4: GENERAL SHORT-SIGHTED MODELS

1 GENERATE-GREEDY-SPACE(SSP S = 〈S, s0,G,A, P, C〉, s ∈ S, k ∈ N∗, H a heuristic
for V ∗)

2 begin
3 Q← EMPTY-SMALLEST-FIRST-PRIORITY-QUEUE

4 Ss,k ← {s}
5 Gs,k ← {s}
6 Q.INSERT(0, s)
7 while not Q.ISEMPTY() do
8 if |Ss,k| ≥ k then
9 BREAK

10 ŝ← Q.POP()
11 if ŝ ∈ G then
12 CONTINUE

13 else
14 Gs,k ← Gs,k \ {ŝ}
15 foreach a ∈ A and s′ ∈ S s.t. P (s′|ŝ, a) > 0 do
16 if s′ 6∈ Ŝ then
17 Ss,k ← Ss,k ∪ {s′}
18 Gs,k ← Gs,k ∪ {s′}
19 Q.INSERT(H(s′)/Pmax(s, s

′), s′)

20 return (Ss,k,Gs,k)

Algorithm 4.2: Algorithm to generate the state space and goal set for greedy short-sighted
SSP.

Definition 4.3 (Greedy Short-Sighted SSP). Given an SSP S = 〈S, s0,G,A, P, C〉, a state s ∈ S,
k ∈ N∗ and a heuristic H , the (s, k)-greedy short-sighted SSP Ss,k = 〈Ss,k, s,Gs,k,A, P, Cs,k〉
associated with S is defined as:

• Ss,k and Gs,k are the returned values of GENERATE-GREEDY-SPACE(S, s, k,H) (Algo-
rithm 4.2); and

• Cs,k(s′, a, s′′) =

C(s′, a, s′′) +H(s′′) if s′′ ∈ Gs,k

C(s′, a, s′′) otherwise
, ∀s′ ∈ Ss,k, a ∈ A, s′′ ∈ Ss,k

For simplicity, when H is not clear by context nor explicit, then H(s) = 0 for all s ∈ S.

Figure 4.7 shows two (s0, 7)-greedy short-sighted SSPs associated with the SSP in Fig-
ure 4.6(a) when using the zero-heuristic. Due to ties in the zero-heuristic (H0(s) = 0 for all
s ∈ S), five greedy short-sighted SSPs from s0 using k = 7 are possible: one for each branch
containing one pair of leaves, e.g., Figures 4.7(a) and 4.7(b), and the greedy short-sighted SSP

4.2 GREEDY SHORT-SIGHTED SSPS 43

0.9 0.9

0.5 0.5

0.5 0.5

0.9 0.9

0.9 0.9

0.5 0.5

1

2 3

4 5

1110

(a)

0.9 0.9

0.5 0.5

0.5 0.5

0.9 0.9

0.9 0.9

0.5 0.5

1

2 3

6 7

12 13

(b)

Figure 4.7: Examples of (s0, 7)-greedy short-sighted SSPs for the SSP in Figure 4.6. (a)
and (b) are two of the five possible (s0, 7)-greedy short-sighted SSPs when the zero heuristic
is used. (b) is also the unique (s0, 7)-greedy short-sighted SSPs obtained when the heuristic
H ′(s) = δ(s, 13) (Definition 3.1 p.21) is used.

equivalent to the depth-based short-sighted SSP for t = 2 (Figure 4.6(b)). Notice that the greedy
short-sighted SSP in Figure 4.7(b) contains the original goal, i.e., the tree leaf labeled 13.

To further illustrate the advantages of greedy short-sighted SSPs, consider the heuristicH ′ de-
fined as the minimum number of actions from s to the goal set. Formally, H ′(s) = δ(s, 13) (Def-
inition 3.1 p.21). Using H ′ as heuristic, the (s0, 7)-greedy short-sighted SSPs associated with
the SSP in Figure 4.6(a) is unique and is depicted in Figure 4.7(b). This example shows how
greedy short-sighted SSPs can take advantage of informed heuristics to generate state spaces
biased towards the goal set of the original problem.

4.2.2 The n-Binary Tree Problem

In this section, we generalize the binary search problem in Figure 4.6 to full binary trees any
depth n (Example 4.1). Then we present an empirical comparison between SSiPP using depth-
based and greedy short-sighted SSPs in the n-binary tree problems for different parameters and
values n.

Example 4.1 (n-binary tree). Given n ∈ N∗, the n-binary tree problem contains 2n+1 states:
S = {1, 2, · · · , 2n+1 − 1, r}. The initial state s0 is 1 and the goal set G is the singleton set {sG},
where

sG =

2n +
∑bn

2
c

i=0 22i if n is odd

2n +
∑n

2
i=1 22i−1 if n is even

.

For the states i ∈ {1, · · · , 2n − 1}, three actions are available random, left and right; the
probability of reaching the state 2i is, respectively, 0.5, 0.9, and, 0.1 for random, left and

44 CHAPTER 4: GENERAL SHORT-SIGHTED MODELS

right; and with probability 0.5, 0.1, and, 0.9, the state 2i + 1 is reached using random, left
and right; respectively. In the states i ∈ {2n, · · · , 2n+1 − 1} \ G, the only available action
is restart and P (r|i,restart) = 1. restart is also the only available action in state r and
P (1|r,restart) = 1. Actions random and restart have cost 1; and actions left and right

have cost 5.

We empirically compare depth-based and greedy short-sighted SSPs by running SSiPP (Al-
gorithm 3.2) using both definitions of short-sighted SSPs. The heuristic used in this experiment
is the zero heuristic and for depth-based short-sighted SSPs, we use t ∈ {3, 4}. For greedy
short-sighted SSPs, we choose the value of k based on the number of states used by the depth-
based short-sighted SSPs. Formally, before Ss,k is computed in Algorithm 3.2 Line 6, we com-
pute the state space |Ŝ| of the (s, t)-depth-based short-sighted SSP and use k = |Ŝ|. We refer
to this parametrization of greedy short-sighted SSPs as “budget t” and, in this experiment, we
consider two budget parametrizations budget t = 3 and budget t = 4. Trajectory-based short-
sighted SSPs are not considered because of the following equivalence between them and depth-
based short-sighted SSPs in the n-binary tree problems: for all ρ ∈ (0, 1], the trajectory-based
short-sighted SSP using ρ as parameter is equivalent to the depth-based short-sighted SSP using
t = blog0.9 ρc+ 1.

Figure 4.8 presents the results of this experiment as average and 95% confidence interval
over 100 samples for the accumulated cost to reach the goal in the n-binary tree problems. Both
parametrizations of SSiPP using greedy short-sighted SSPs outperform SSiPP using depth-based
SSPs. In special, the budget t = 3 parametrization of greedy short-sighted SSPs outperforms
parametrization t = 4 of depth-based short-sighted SSPs.

Notice that the zero heuristic does not favor greedy short-sighted SSPs since this heuristic
provides no information about the goal. However, SSiPP improves its current lower bound V
every time a short-sighted SSP is solved and uses the improved V as heuristic for the subsequent
short-sighted SSPs (Algorithm 3.2 Lines 6 and 8). Therefore, as the execution of SSiPP evolves,
the greedy short-sighted SSPs are able to take advantage of the improved lower bound V in order
to bias the short-sighted state space Ss,k towards the goals of the original problem.

4.3 Extending SSiPP to General Short-Sighted Models

In Section 3.3, we proved that SSiPP (Algorithm 3.2) always terminates and is asymptotically
optimal for depth-based short-sighted SSPs. We generalize these results regarding SSiPP by:
(i) providing the sufficient conditions for the generation of short-sighted problems (Algorithm 3.2
Line 6) in Definition 4.4; and (ii) proving that SSiPP implicitly performs Bellman backups (The-

4.3 EXTENDING SSIPP TO GENERAL SHORT-SIGHTED MODELS 45

4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
4

Problem Number (n)

A
v
e

ra
g

e
 c

o
s
t

to
 r

e
a

c
h

 t
h

e
 g

o
a

l
Cost to reach the goal in the binary tree problems

greedy budget t=3

greedy budget t=4

depth−based t=3

depth−based t=4

Figure 4.8: Results for the binary-tree domain experiment. Each point represents the average
and 95% confidence interval over 100 samples for the accumulated cost to reach the goal in the
n-binary tree problems.

orem 4.2), and always terminates (Theorem 4.3) when the short-sighted SSP generator respects
Definition 4.4. The proof that SSiPP is asymptotically optimal (Theorem 3.9) automatically
follows since it relies only on the fact that SSiPP terminates and performs Bellman updates.

Definition 4.4. Given an SSP 〈S, s0,G,A, P, C〉, the sufficient conditions on the short-sighted
SSPs 〈S′, ŝ,G′,A, P ′, C ′〉 returned by the generator in Algorithm 3.2 Line 6 are:

1. G ∩ S′ ⊆ G′;

2. ŝ 6∈ G→ ŝ 6∈ G′; and

3. for all s ∈ S′\G′, s′ ∈ S and a ∈ A, if P (s′|s, a) > 0, then s′ ∈ S′ and P ′(s|s′, a) = P (s|s′, a).

Item 3 of Definition 4.4 guarantees that, if a state s is in the short-sighted SSP and is not a
goal, i.e., s ∈ S′ \ G′, then the resulting states of all applicable actions on s are also in S′ (Fig-
ure 4.4) and they are reachable with the same probability as in the original SSP. Notice that,
by definition, depth-based, trajectory-based and greedy short-sighted SSPs meet the sufficient
conditions presented on Definition 4.4.

Theorem 4.2. Given an SSP S = 〈S, s0,G,A, P, C〉 such that the Assumption 2.1 holds, a mono-

tonic lower boundH for V ∗, and a short-sighted SSP generator that respects Definition 4.4, then

the loop in Line 8 of SSiPP (Algorithm 3.2) is equivalent to applying at least one Bellman backup

46 CHAPTER 4: GENERAL SHORT-SIGHTED MODELS

on V for every state s′ ∈ Sπ
∗
Ŝ \ Ĝ, where Ŝ = 〈Ŝ, ŝ, Ĝ,A, P̂ , Ĉ〉 is the generated short-sighted

SSP on Line 6.

Proof. Let U denote Sπ
∗
Ŝ \ Ĝ. After the loop in Line 8 of Algorithm 3.2 is executed, we have that,

for all s′ ∈ U, V (s′) equals V ∗Ŝ (s′). By item 1 of Definition 4.4, we have U ∩ G = ∅, therefore
V (sG) remains equal to 0 for all sG ∈ G. Thus, we need to prove that, (BV)(s′) ≤ V ∗Ŝ (s′) for all
s′ ∈ U, since V is monotonic and admissible (Theorem 2.1). By item 3 of Definition 4.4, every
state s′ ∈ U is such that {s′′ ∈ S|P (s′′|s′, a) > 0, ∀a ∈ A} ⊆ Ŝ. Item 3 also guarantees that
P̂ (·|s′, a) = P (·|s′, a) for all s′ ∈ U and a ∈ A, therefore (BV)(s′) = (B̂V)(s′) for all s′ ∈ U,
where B̂ is the Bellman operator B applied in the short-sighted SSP Ŝ. Since V is monotonic
and admissible, (Bs,tV)(s′) ≤ V ∗Ss,t(s

′). Therefore, (BV)(s′) ≤ V ∗Ss,t(s
′) for all s′ ∈ U.

Theorem 4.3. SSiPP always terminates under the same conditions of Theorem 4.2.

Proof. By Assumption 2.1 there is no dead ends in S, thus ε-OPTIMAL-SSP-SOLVER always
terminates. Since the short-sighted SSP Ŝ is an SSP by definition, then a goal state sG ∈ Ĝ of
Ŝ is always reached, therefore the loop in Line 11 of Algorithm 3.2 also always terminates. If
sG is a goal of the original SSP, i.e., sG ∈ G, then SSiPP terminates in this iteration. Otherwise,
sG ∈ Ĝ \ G and sG 6= s by item 2 of Definition 4.4, i.e., sG differs from the state s used as
initial state for the short-sighted SSP generation. Thus another iteration of SSiPP is performed
using sG as s in the generation of a new short-sighted SSP (Line 6). Suppose, for contradiction
purpose, that every goal state reached during SSiPP execution is an artificial goal, i.e., SSiPP
does not terminate. Then infinitely many short-sighted SSPs are solved. Since S is finite, then
there exists s ∈ S that is updated infinitely often, therefore V (s)→∞. However, V ∗(s) <∞ by
Assumption 2.1. Since SSiPP performs Bellman updates (Theorem 4.2) then V (s) ≤ V ∗(s) by
monotonicity of Bellman updates (Theorem 2.1) and admissibility of H , a contradiction. Thus
every execution of SSiPP reaches a goal state sG ∈ G and therefore terminates.

4.4 Summary

In this chapter, we introduced trajectory-based short-sighted SSPs and greedy short-sighted SSPs.
Trajectory-based short-sighted SSPs prune states in which every trajectory that reach them have
probability less than δ. Greedy short-sighted SSPs perform a best-first search in the state space
of the original problem using H(s′)/Pmax(s, s

′) as evaluation function, where Pmax(s, s
′) is the

maximum probability of a trajectory from s (the initial state of the short-sighted SSP) to s′;
the search stops when the search tree contains k or more states and the visited states are used

4.4 SUMMARY 47

as the short-sighted state space and the leaves as artificial goals. We also presented a set of
sufficient conditions for any short-sighted SSP definition in which SSiPP always terminates and
is asymptotically optimal.

48 CHAPTER 4: GENERAL SHORT-SIGHTED MODELS

Chapter 5

Extending SSiPP

In this chapter, we examine how to combine SSiPP (Section 3.3) with commonly used prob-
abilistic planning techniques, e.g., labeling of converged states and determinizations [Trevizan
and Veloso, 2013]. We begin by adding a labeling mechanism to SSiPP in order to keep track
of states that already converged to their ε-optimal solution and avoid revisiting them. Next, in
Section 5.2, we extend SSiPP to multi-core processing by generating and solving multiple short-
sighted SSPs in parallel. In Section 5.3, we show how to combine SSiPP with determinizations
in order to compute sub-optimal solutions more efficiently. The empirical comparison between
SSiPP, the algorithms proposed in this chapter, and other state-of-the-art probabilistic planners
is presented in Chapter 7.

5.1 Labeled SSiPP

As described in Section 3.3, SSiPP obtains the next state s′ from the current state s by either exe-
cuting or simulating the optimal policy π∗Ss,t of the current short-sighted SSP Ss,t (Algorithm 3.2
Line 11). This procedure is repeated until s′ is a goal state, either from the original SSP or an
artificial goal of Ss,t.

RTDP (Section 2.3.1) employs a similar technique: the next state s′ is obtained by either
executing or simulating πV , i.e., the greedy action according to the current estimate V of V ∗.
This approach can be seen as an unbiased sampling of the next state; therefore, more likely
successor states are updated more often. However, the ε-convergence of a given state s depends
on all its reachable successors [Bonet and Geffner, 2003], thus unlikely successors should also be
visited. As a result, for a given state s, unbiased sampling might not update unlikely successors
of s frequently, thus delaying the overall ε-convergence to V ∗.

49

50 CHAPTER 5: EXTENDING SSIPP

1 CHECKSOLVED(SSP S = 〈S, s0,G,A, P, C〉, state s ∈ S, value function V , solved ⊆ S,
ε > 0)

2 begin
3 conv ← true
4 open← EMPTY-STACK

5 closed← EMPTY-STACK

6 if s 6∈ solved then open.PUSH(s)
7 while not open.ISEMPTY() do
8 s← open.POP()
9 closed.PUSH(s)

10 if s ∈ (G ∪ solved) then CONTINUE

11 if R(s, V) > ε then
12 conv ← false
13 CONTINUE

14 foreach s′ s.t. P (s′|s, πV (s)) > 0 do
15 if s′ 6∈ (solved ∪ open ∪ closed) then open.PUSH(s′)

16 if conv = true then
17 foreach s′ ∈ closed do
18 solved← solved ∪ {s′}
19 else
20 while not closed.ISEMPTY() do
21 s← closed.Pop()
22 V (s)← (BV)(s)

23 return (solved, V)

Algorithm 5.1: CHECKSOLVED algorithm used by Labeled RTDP [Bonet and Geffner, 2003].

Labeled RTDP (LRTDP) [Bonet and Geffner, 2003] extends RTDP by tracking the states
which the estimate V of V ∗ has already ε-converged and not visiting these states again. In
order to find and label the ε-converged states, the procedure CHECKSOLVED (Algorithm 5.1)
is introduced. Given a state s, CHECKSOLVED searches for states s′ reachable from s when
following the greedy policy πV such that R(s′, V) > ε. If no such state s′ is found then s and all
the states in Sπ

V reachable from s have ε-converged and they are labeled as solved. Alternatively,
if there exists s′ reachable from s when following the greedy policy πV such that R(s′, V) > ε,
then a Bellman backup is applied on at least V (s′). A key property of CHECKSOLVED is that, if
V has not ε-converged, then a call to CHECKSOLVED either improves V or labels a new state as
solved; formally:

Theorem 5.1 ([Bonet and Geffner, 2003, Theorem 4]). Given an SSP S = 〈S, s0,G,A, P, C〉
that satisfies Assumption 2.1, ε > 0, and a monotonic lower bound V for V ∗, then a call of

5.1 LABELED SSIPP 51

CHECKSOLVED(S, s, V, solved, ε) for s 6∈ solved, that returns (solved′, V ′), either: labels a

state as solved, i.e., |solved′| > |solved|; or, there exists s′ ∈ S such that V ′(s′)− V (s′) > ε.

Using the solved labels, the sampling procedure of LRTDP can be seen as a case of rejection
sampling: if the sampled successor s′ of s is marked as solved, restart the procedure from the
initial state s0, otherwise use s′. This new sampling procedure gives LRTDP both a better anytime
performance and a faster convergence to the ε-optimal solution when compared to RTDP.

Labeled-SSiPP (Algorithm 5.2) is an extension of SSiPP that incorporates the labeling mech-
anism of LRTDP and uses the CHECKSOLVED procedure. Since the states marked as solved have
already ε-converged, there is no need to further explore and update them; therefore the solved
states are also considered as artificial goals for the generated short-sighted SSPs (Algorithm 5.2
Line 10). By adding the solved states to the goal set of the generated short-sighted SSPs, any
algorithm used as ε-OPTIMAL-SSP-SOLVER (Line 13) will implicitly take advantage of the la-
beling mechanism, i.e., the search is stopped once a solved state is reached.

The simulation of the current short-sighted SSP (Algorithm 5.2 Line 16) for Labeled-SSiPP
finishes when the state s is either: (i) a goal state of the original problem; (ii) a solved state; or
(iii) an artificial goal. Only in the last case the algorithm continues to generate short-sighted SSPs.
Thus, Labeled-SSiPP (as LRTDP) also employs rejection sampling: if a solved state is sampled,
then the search restarts from the initial s0.

Besides the empirical advantage of LRTDP over RTDP [Bonet and Geffner, 2003], the la-
beling mechanism also allows to upper bound the maximum number of iterations necessary for
LRTDP to converge to the ε-optimal solution. This same upper bound holds for Labeled-SSiPP:

Corollary 5.2. Given an SSP S = 〈S, s0,G,A, P, C〉 that satisfies Assumption 2.1, ε > 0, t ∈ N∗

and a monotonic heuristic H for V ∗, then Labeled-SSiPP (Algorithm 5.2) reaches ε-convergence

after at most ε−1
∑

s∈S [V ∗(s)−H(s)] iterations of the loop in Line 5.

Proof. In each iteration of the loop in Line 5 of Algorithm 5.2, CHECKSOLVED is called for
at least one state ŝ 6∈ solved, since s0 6∈ solved. By Theorem 5.1, after CHECKSOLVED is
called for ŝ, either: (i) ŝ ∈ solved; or (ii) there exists s′ 6∈ solved reachable from ŝ when
following the greedy policy πV such that V (s′)− V old(s′) > ε, where V old denotes V before the
CHECKSOLVED call. Thus, in the worst case, each CHECKSOLVED call improves V for exactly
one state s′ 6∈ solved. Therefore, CHECKSOLVED is called at most ε−1

∑
s∈S [V ∗(s)−H(s)]

times before s0 ∈ solved, which is the termination condition for the loop in Line 5.

We empirically compare the ε-convergence time of Labeled-SSiPP and other state-of-the-art
planners in Chapter 7. In the next section, we show how to extend Labeled-SSiPP to multi-core
computing by generating and solving multiple short-sighted SSPs in parallel.

52 CHAPTER 5: EXTENDING SSIPP

1 LABELED-SSIPP(SSP S = 〈S, s0,G,A, P, C〉, t ∈ N∗, H a heuristic for V ∗, ε > 0)
2 begin
3 V ← Value function for S with default value given by H
4 solved← ∅
5 while s0 6∈ solved do
6 s← s0
7 visited← EMPTY-STACK

8 while s 6∈ (G ∪ solved) do
9 Ss,t ← GENERATE-SHORT-SIGHTED-SSP(S, s, V , t)

10 foreach s′ ∈ Ss,t do
11 if s′ ∈ solved then
12 Gs,t ← Gs,t ∪ {s′}

13 (π∗Ss,t , V
∗
Ss,t)← ε-OPTIMAL-SSP-SOLVER(Ss,t, V , ε)

14 foreach s′ ∈ S
π∗Ss,t \ Gs,t do

15 V (s′)← V ∗Ss,t(s
′)

16 while s 6∈ Gs,t do
17 visited.PUSH(s)
18 s← APPLY-ACTION(π∗Ss,t(s),s)

19 while not visited.ISEMPTY() do
20 s← visited.POP()
21 (solved, V)← CHECKSOLVED(S, s, V , solved, ε)
22 if s 6∈ solved then
23 break

24 return V
Algorithm 5.2: Labeled SSiPP: version of SSiPP that incorporates the LRTDP labeling mech-
anism. CHECKSOLVED is presented in Algorithm 5.1.

5.2 PARALLEL LABELED SSIPP 53

5.2 Parallel Labeled SSiPP

Deterministic planners have benefited from parallelism to compute both optimal and suboptimal
solutions. Different approaches have been proposed, e.g., search space abstraction [Burns et al.,
2009, Burns et al., 2010, Zhou et al., 2010], hashing [Zhou and Hansen, 2007, Kishimoto et al.,
2009, Kishimoto et al., 2010], and parallel successor generation [Vidal et al., 2010, Sulewski
et al., 2011].

For discounted infinite-horizon MDPs (Section 2.1), i.e., probabilistic planning problems
without goal states, parallel solvers have been proposed [Archibald et al., 1993, Archibald et al.,
1995]. These planners extend asynchronous value iteration to perform updates in parallel. Al-
though these approaches can be applied to SSPs, they do not exploit the problem’s structure,
e.g., the initial state and set of goals states. Therefore, parallel MDP solvers always explore the
complete state space, including irrelevant states [Barto et al., 1995].

It is important to notice that finding the optimal solution of a deterministic and a probabilistic
planning problem belong, respectively, to the NC and P-complete complexity classes in their
enumerative representation [Papadimitriou and Tsitsiklis, 1987]. In other words, the optimal so-
lution of a deterministic planning problem can be efficiently found using a parallel algorithm,
while it is unlikely that optimal algorithms to solve probabilistic planning problem can be ef-
ficiently parallelized.1 However, problems in which a given set of states L must be visited in
order to reach the goal can take advantage of parallelization. To illustrate how parallelization can
speedup some probabilistic planning problems, consider the Hallway problem example:

Example 5.1 (Hallway problem). In the hallway problem, a robot has to navigate a grid com-
posed by k rooms of size r each while avoiding the hazard locations and walls. The rooms form
a line and each room is connect to the next by a single door. Figure 5.1 shows an example of grid
for k = 3 and r = 5. Every time the robot enters a hazard location, it breaks with probability 0.9.
Thus, the state space S for the hallway problem is composed by pairs 〈l, b〉, where l is a location
in the grid and b is a boolean variable indicating if the robot is broken or not. The initial state s0
is 〈d0, false〉 and the goal is to reach the last door and be not broken, i.e., G = {〈dk, false〉}. Five
actions are available in the hallway problem: move north, south, east and west, and fix-robot. If
the robot is not broken, the move actions succeeds with probability 0.9 and move the robot to
the given direction; and fails with probability 0.1 by not moving the robot. When the robot is
broken, the move actions do not change the current state. If the robot is broken, the fix-robot
action deterministically fixes the robot and moves it to d0, i.e., P (s0|〈l, true〉, fix-robot) = 1 for

1It is unlikely due to the unproven assumption that NC 6= P.

54 CHAPTER 5: EXTENDING SSIPP

d0

d1

d2

d3

R

Figure 5.1: Grid of the hallway problem (Example 5.1) for k = 3 and r = 5. In this problem,
a robot “R” has to navigate between rooms from location d0 to location d3 while avoiding the
hazard locations (grey) and walls (black).

all locations l. When the robot is not broken, fix-robot does not change the current state. The
cost of the move actions are 1 and the cost of fix-robot is 10.

Since there is a single door connecting each room, we can decompose a k-r-hallway problem
into k instances of a 1-r-hallway problem, where the initial state and goal set of the i-th problem
are, respectively, 〈di−1, false〉 and {〈di, false〉} for i ∈ {1, · · · , k}. Therefore, we can compute
an optimal policy for a k-r-hallway problem by combining an optimal policy for each one of its k
subproblems.

In this section, we show how to extend Labeled-SSiPP (Algorithm 5.2) in order to exploit the
structure of this problem by solving several short-sighted SSPs in parallel and then combine their
solutions. We start by assuming that the list of states L that must be visited to reach the goal is given
and introduce the new algorithm Parallel Labeled-SSiPP (Section 5.2.1). Then, in Section 5.2.2,
we present a method based on landmarks to automatically generate the list of states L.

5.2.1 Algorithm

Parallel Labeled-SSiPP, shown in Algorithm 5.3, extends Labeled-SSiPP by solving multiple
short-sighted SSPs in parallel and combining their solutions. Precisely, Parallel Labeled-SSiPP
launches n− 1 new threads (Lines 10 to 12), each one with their own copy of the current lower
bound V , while the main thread solves the short-sighted SSP Ss,t associated with the state s
(Line 13). Once the ε-optimal solution for Ss,t is obtained by the main thread, all the n − 1

threads are stopped and their current lower bound V i is merged with V (Lines 14 to 16). Each
thread selects a state s′ ∈ L using a thread-safe procedure to avoid duplicates and solves the
short-sighted SSP Ss′,t; if the ε-optimal solution for Ss′,t is obtained before being stopped by the
main thread, a new state s′ ∈ L is selected (Lines 25 to 28).

A copy of the lower bound V is given to each thread (Algorithm 5.3, line 10) in order to pre-
vent interference between threads while computing the solutions of the short-sighted SSPs. To
illustrate such interference, consider the (s, 3)-depth-based short-sighted SSPs S0 and S2 associ-

5.2 PARALLEL LABELED SSIPP 55

1 PARALLEL LABELED-SSIPP(SSP S = 〈S, s0,G,A, P, C〉, t ∈ N∗, H a heuristic for V ∗,
ε > 0, n ∈ N∗)

2 begin
3 V ← Value function for S with default value given by H
4 solved← ∅
5 while s0 6∈ solved do
6 s← s0
7 visited← EMPTY-STACK

8 while s 6∈ (G ∪ solved) do
9 L← COMPUTE-L(S, s)

10 foreach i ∈ {1, . . . , n− 1} do
11 V i ← MAKE-COPY(V)
12 START-NEW-THREAD(S, t, V i, ε, L)

13 (V , π̂∗)← SOLVE-SHORT-SIGHTED(S, s, t, V , ε)
14 STOP-ALL-THREADS()
15 for s′ ∈ S do in parallel
16 V (s′)← max{V (s′), V 1(s

′), . . . , V n−1(s
′)}

17 while s 6∈ Gs,t do
18 visited.PUSH(s)
19 s← APPLY-ACTION(π∗Ss,t(s),s)

20 while not visited.ISEMPTY() do
21 s← visited.POP()
22 (solved, V)← CHECKSOLVED(S, s, V , solved, ε)
23 if s 6∈ solved then break

24 return V

25 START-NEW-THREAD(SSP S, t > 0, V a lower bound for V ∗, ε > 0, L a list of states)
26 begin
27 while (s← THREAD-SAFE(L.POP())) do
28 V ← SOLVE-SHORT-SIGHTED(S, s, t, V , ε)

29 SOLVE-SHORT-SIGHTED(SSP S, s ∈ S, t > 0, V a lower bound for V ∗, ε > 0)
30 begin
31 Ss,t ← GENERATE-SHORT-SIGHTED-SSP(S, s, V , t)
32 Gs,t ← Gs,t ∪ (solved ∩ Ss,t)
33 (π∗Ss,t , V

∗
Ss,t)← ε-OPTIMAL-SSP-SOLVER(Ss,t, V , ε)

34 foreach s′ ∈ S
π∗Sŝ,t \ Gŝ,t do

35 V (s′)← V ∗Sŝ,t(s
′)

36 return (π∗Ss,t , V)

Algorithm 5.3: Parallel version of Labeled-SSiPP (Algorithm 5.2). STOP-ALL-THREADS

(Line 14) cancels all the extra threads running and returns immediately to the main thread.

56 CHAPTER 5: EXTENDING SSIPP

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

d0

d1

d2

d3

(a)

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

d0

d1

d2

d3

(b)

Figure 5.2: Examples of (s, t)-depth-based short-sighted SSPs for the hallway problem in Fig-
ure 5.1. The patterned cells represent the locations included in each short-sighted SSP. For both
short-sighted SSPs, t = 3, and s equals 〈d0, false〉 and 〈d2, false〉 for (a) and (b) respectively.

ated with the hallway problem example in Figure 5.1 for s equal to, respectively, s0 = 〈d0, false〉
and 〈d2, false〉. As shown in Figure 5.2, the initial state s0 belongs to the state space of both S0

and S2, also s0 is an artificial goal of S2. Thus, if S0 and S2 are solved in parallel sharing the
same lower bound V , then the Bellman updates applied on V (s0) when solving S0 affects the so-
lution of S2, therefore there is no guarantee that solution computed by ε-OPTIMAL-SSP-SOLVER

(Algorithm 5.3 Line 13) for S2 is ε-optimal since V (s0) might have changed.

Another benefit of each thread manipulating their own copy V i of V is that Theorem 3.7
guarantees that the monotonicity and admissibility of each V i is preserved. Once the (partial)
solutions from all threads are obtained, they are combined in parallel by keeping the maximum
over all lower bounds on each state s ∈ S (Algorithm 5.3 Line 15). Clearly, the max operator
preserves the admissibility of V and, in Lemma 5.3, we prove that the max operator also pre-
serves the monotonicity of a value-function. Therefore, each iteration of Parallel Labeled-SSiPP
maintains the lower bound V monotonic and admissible. Corollary 5.4 extends the convergence
bound of Labeled-SSiPP (Corollary 5.2) to Parallel Labeled-SSiPP.

Lemma 5.3. Given an SSP S = 〈S, s0,G,A, P, C〉 and two monotonic value functions V1 and V2
for S, then Vm, defined as Vm(s) = max{V1(s), V2(s)}, is also a monotonic value function for S.

Proof. Suppose, for contradiction, that Vm is not monotonic, thus there exists s ∈ S such that
Vm(s) > (BVm)(s). Without loss of generality assume V2(s) < V1(s) = Vm(s). If there
exist s′ ∈ S and a ∈ A s.t. P (s′|s, a) > 0 and V2(s

′) > V1(s
′), then either: (i) a equals

argmina′ E [C(s, a′, s′) + Vm(s′)|s, a′], and therefore (BVm)(s) ≥ (BV1)(s) ≥ V1(s) = Vm(s);
otherwise (ii) (BVm)(s) = (BV1)(s) ≥ V1(s) = Vm(s).

Alternatively, if there exists no such s′, then V2(s
′) ≤ V1(s

′) for all s′ ∈ S and a ∈ A

s.t. P (s′|s, a) > 0; therefore (iii) (BVm)(s) = (BV1)(s) ≥ V1(s) = Vm(s). By (i) – (iii), we
have that Vm(s) ≤ (BVm)(s), and a contradiction is obtained.

5.2 PARALLEL LABELED SSIPP 57

Room Size (r) 5 10 15
Number of Rooms (k) 5 10 15 20 5 10 15 20 5 10 15 20

Parallel L. SSiPP
n = 2 1.85 1.66 1.61 1.58 1.46 1.36 1.36 1.39 1.29 1.31 1.27 1.32
n = 4 2.73 2.53 2.47 2.42 1.97 1.98 1.91 1.93 1.71 1.74 1.71 1.74
n = 8 2.95 3.23 3.17 3.01 2.05 2.33 2.31 2.31 1.85 2.17 2.16 2.11

Table 5.1: Speedup of Parallel Labeled-SSiPP, for different number of parallel threads n,
w.r.t. Labeled-SSiPP in the hallway robot domain. Results are averaged over 50 random prob-
lems for each combination of r and k. Best performance shown in bold.

Corollary 5.4. Given an SSP S = 〈S, s0,G,A, P, C〉 that satisfies Assumption 2.1, ε > 0, t ∈ N∗,
n ∈ N∗ and a monotonic heuristicH for V ∗, then Parallel Labeled-SSiPP (Algorithm 5.3) reaches

ε-convergence after at most ε−1
∑

s∈S [V ∗(s)−H(s)] iterations of the loop in Line 5.

Proof. Each iteration of the loop in Line 5 solves at least the short-sighted SSP associated with
the current state s, i.e., if n = 1, Parallel Labeled-SSiPP and Labeled-SSiPP are equivalent.
Since the max operator preserves the admissibility and monotonicity of V (Lemma 5.3), then
this proof follows from Corollary 5.2.

To illustrate the advantages of Parallel Labeled-SSiPP and (sequential) Labeled-SSiPP, we
present an experiment comparing both of them in randomly generated k-r-hallway problems.
For this experiment, both planners use the Manhattan distance as the heuristic H , LRTDP as the
ε-optimal solver and t = 5 for the generation of depth-based short-sighted SSPs. The list L given
to Parallel Labeled-SSiPP contains all states in which the robot is not broken and at one of the
internal doors, precisely, L = {〈d1, false〉, 〈d2, false〉, . . . , 〈dk−1, false〉}.

We generated 50 random problems for each combination of r ∈ {5, 10, 15} and k ∈ {5, 10,

15, 20}. Door locations are chosen uniformly at random and every location that is not a door, is
marked as hazard with probability 0.15. Each planner is run until ε-convergence, for ε = 10−4,
and we limit the runtime and memory to 1 hour and 4 GB, respectively. The experiments were
conducted on a Linux machine with 8 cores running at 2.40 GHz.

Table 5.1 shows the results averaged over the 50 random problems for each parametriza-
tion. Parallel Labeled-SSiPP outperforms its sequential version in all the parametrizations. The
obtained speedup varies from 1.85 to 3.23 when 8 threads are used. As expected, we see the
diminishing returns effect: the obtained improvement decreases as more threads are added.

5.2.2 Choosing States for Parallel Labeled SSiPP

In this section, we present an algorithm to compute the list of states L used by Parallel Labeled-SSiPP
to build short-sighted SSPs. Notice that L can be seen as a list of subgoals of the original problem,

58 CHAPTER 5: EXTENDING SSIPP

1 COMPUTE-L(SSP S = 〈S, s0,G,A, P, C〉, s ∈ S)
2 begin
3 D← ALL-OUTCOMES-DETERMINIZATION(S)
4 G ← FIND-LANDMARKS(D, s)
5 P← FIND-SHORTEST-PATH(G, s,G)
6 L← INSTANTIATE-ALL-FORMULAS(P)
7 return L

8 end
Algorithm 5.4: Landmark approach to compute L for Parallel Labeled-SSiPP (Algorithm 5.3).
G is a graph representing the landmarks of the deterministic problem D. INSTANTIATE-ALL-
FORMULAS generates all the states s′ ∈ S such that at least on landmark in P is true in s′.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

d0

d1

d2

d3

Figure 5.3: Example of states returned by Algorithm 5.4 from the initial state for the hallway
problem in Figure 5.1. The patterned cells and green arrows represents, respectively, the vertices
(landmarks) and arcs (ordering) of the path P (Algorithm 5.4 Line 5).

e.g., the states 〈d1, false〉 and 〈d2, false〉 in the hallway problem example (Figure 5.1). Parallel
Labeled-SSiPP makes no assumption w.r.t. the states s ∈ L and any state s that is reachable from
s0 has potential to generate a speedup.

In deterministic planning, one approach to obtain subgoals is through landmarks [Hoffman
et al., 2004]. A landmark is a formula over the problem’s state variables (Section 2.2) that
must be true at some point during the execution of every solution that reaches the goal. Two
landmarks a and b can also be (partially) ordered according to different constraints, e.g., if a is
true some time before b and if a is always true one step before b. Finding landmarks and ordering
them is computationally expensive, for instance, deciding if a state variable is a landmark is
PSPACE-complete [Hoffman et al., 2004]. Therefore, algorithms to automatically find (ordered)
landmarks relies on approximations in order to be computationally feasible.

Our approach to generate L for a given S is to obtain partially ordered landmarks for the all-
outcomes determinization of S (Section 2.3.2) and post-process them in order to remove land-
marks that have already being met. Algorithm 5.4 describe our method to generate L and we use
the Fast-Downward [Helmert, 2006] landmark identification algorithm as FIND-LANDMARKS

in Line 4. Figure 5.3 shows the landmarks selected in Line 4 from the initial state in the hallway
example in Figure 5.1.

5.3 SSIPP-FF 59

Room Size (r) 5 10 15
Number of Rooms (k) 5 10 15 20 5 10 15 20 5 10 15 20

Parallel L. SSiPP
n = 2 1.50 1.41 1.43 1.37 1.21 1.19 1.17 1.14 1.08 1.13 1.09 1.11
n = 4 2.07 1.97 1.91 1.93 1.38 1.34 1.29 1.31 1.20 1.16 1.13 1.14
n = 8 2.33 2.17 2.13 2.06 1.52 1.43 1.44 1.42 1.29 1.22 1.21 1.21

Table 5.2: Speedup of Parallel Labeled-SSiPP using Algorithm 5.4 to generate the list of state L
in the hallway robot domain. Results are averaged over 50 random problems for each combina-
tion of r and k. Best performance shown in bold.

We repeated the series of random hallway problems experiments (Table 5.1) following the
same methodology and using Algorithm 5.4 to generate the list L. Table 5.2 presents the results
as average speedup with respect to (sequential) Labeled-SSiPP over the 50 random problems for
each parametrization. Parallel Labeled-SSiPP using Algorithm 5.4 still outperforms its sequen-
tial version in all the parametrizations and the speedup varies from 1.21 to 2.33 when 8 threads
are used. As expected, the speedup decreases with respect to Parallel Labeled-SSiPP using the
list of doors as L, i.e., Table 5.1. There are two reasons for this decrease in performance, the
extra overhead of computing the landmarks and the extra states returned by Algorithm 5.4. The
latter is illustrated in Figure 5.3: Algorithm 5.4 returns the locations before and after each door
location di because they are the only locations in which the robot can reach di.

5.3 SSiPP-FF

In this section, we show how to combine the SSiPP and determinizations in order to improve
the scalability of SSiPP while dropping SSiPP’s optimality guarantee. This extension of SSiPP,
SSiPP-FF, is depicted in Algorithm 5.5. After reaching an artificial goal s, SSiPP-FF performs
the following extra steps with respect to SSiPP (Algorithm 3.2): (i) compute a determinization D
of the original SSP; (ii) runs FF to solve D using s as initial state; and (iii) executes the returned
plan until failure (Lines 12 to 17 in Algorithm 5.5).

Any determinization can be used by SSiPP-FF (Line 13) and if the chosen determinization is
stationary, e.g., all-outcomes and most-likely determinization, then the deterministic representa-
tion of S can be pre-computed and reused in every iteration to generate D. Since SSiPP-FF does
not assume any specific behavior of FF, any deterministic planner can be used for solving D in
Line 14 instead of FF.

Besides taking advantage of potential non-optimal solutions, SSiPP-FF also improves the
behavior of FF-Replan by not reaching avoidable dead ends in the generated short-sighted SSPs.
Formally, suppose that a short-sighted SSP Ss,t generated in Line 6 of Algorithm 5.5 has an

60 CHAPTER 5: EXTENDING SSIPP

1 SSIPP-FF(SSP S = 〈S, s0,G,A, P, C〉, t ∈ N∗, H a heuristic for V ∗, ε > 0)
2 begin
3 V ← Value function for S with default value given by H
4 s← s0
5 while s 6∈ G do
6 Ss,t ← GENERATE-SHORT-SIGHTED-SSP(S, s, V , t)
7 (π∗Ss,t , V

∗
Ss,t)← ε-OPTIMAL-SSP-SOLVER(Ss,t, V , ε)

8 foreach s′ ∈ S
π∗Ss,t \ Gs,t do

9 V (s′)← V ∗Ss,t(s
′)

10 while s 6∈ Gs,t do
11 s← execute-action(π∗Ss,t(s))

12 if s 6∈ G then
13 D← DETERMINIZE(S)
14 〈s1, a1, s2, . . . , ak−1, sk〉 ← CALLFF(D, s)
15 for i ∈ {1, . . . , k − 1} do
16 if s 6= si then break
17 s← APPLY-ACTION(ai,s)

18 return V
Algorithm 5.5: SSiPP-FF: version of SSiPP that incorporates determinizations to obtain a
non-optimal solution efficiently.

avoidable dead end, i.e., there exist at least one proper policy for Ss,t and every proper policy for
Ss,t is closed but not complete. Since an ε-optimal policy π∗Ss,t is computed for Ss,t (Line 7), then
π∗Ss,t is one of the existing proper policies by the definition of optimal policies. Therefore the
avoidable dead ends are not reached by executing π∗Ss,t .

Notice that the guarantee of not reaching avoidable dead ends that are included in the current
short-sighted SSP is not due to SSiPP-FF. Instead, this guarantee is inherited from SSiPP. We
finish this section by introducing and analyzing the jumping chain problems (Example 5.2), a
series of problems in which SSiPP-FF avoids all dead ends while determinization approaches
based on shortest distance to goal, e.g., FF-Replan, reach a dead end with probability exponen-
tially large in the problem size.

Example 5.2 (Jumping Chain). For k ∈ N∗, the k-th jumping chain problem has 3k + 1 states:
S = {s0, s1, · · · , s2k, r1, r2, · · · , rk}. The initial state is s0 and the goal set is G = {s2k}. Two
actions are available, aW (walk) and aJ (jump), and their costs are, respectively, 1 and 3 indepen-
dently of the current and resulting state. The walk action is deterministic: P (si+1|si, aW) = 1

for all i, P (si−1|ri, aW) = 1 for i odd; and P (ri|ri, aW) = 1 for i even. When aJ is applied to si,
for i even, the resulting state is si+2 with probability 0.75 and ri+1 with probability 0.25; if i is

5.3 SSIPP-FF 61

s
0

s
4

s
5

s
6

s
1

s
2

s
3

a
w

a
J

1 3 5
r r r

2 4 6
r

 .25

.75

.75

.25

.75 .75

.25 .25

.25.25

.75 .75

r r

Figure 5.4: Representation of the jumping chain problem (Example 5.2) for k = 3. The initial
state is s0, the goal set is G = {s6}. Actions aW and aJ have cost 1 and 3 respectively.

odd, then aJ does not change the current state, i.e., P (si|si, aJ) = 1. For the states ri, aJ is such
that: P (ri|ri, sJ) = 1 for even i; and, for odd i, P (si+1|ri, sJ) = 0.75 and P (ri+1|ri, sJ) = 0.25.
Notice that, for all i even, ri is a dead end. Figure 5.4 shows the jumping chain problem for k = 3.

In the jumping chain problems, FF-Replan using both the most-likely outcomes and all-
outcomes determinization are equivalent because the low probability effect of jump, i.e., move to
a state ri, is less helpful than its most-likely effect. When in a state ri, for i odd, FF-Replan never
chooses action walk because: (i) walk results in a state further away from the goal; and (ii) jump
has a non-zero probability to reach a state in which the goal is still achievable. Therefore, the
solutions obtained by FF-Replan have non-zero probability of reaching a dead end, i.e., a state ri
for i even. Formally, the probability of FF-Replan reaching the goal for the k-th jumping chain
problem is (2p− p2)k for p = P (si+2|si, aJ).

Alternatively, SSiPP-FF always reaches the goal for t ∈ N∗ and the following trivial ex-
tension of the zero-heuristic: hd(s) = ∞ if P (s|s, a) = 1 for all a ∈ A and hd(s) = 0 oth-
erwise. Formally, a dead end ri (for i even) can only be reached when aJ is applied in ri−1

and, in order to show that SSiPP-FF never reaches ri, we need to show that: (i) π∗Ss,t gener-
ated on Line 7 never applies aJ on ri; and (ii) if ri ∈ Gs,t, then π∗Ss,t does not reach ri since
the determinization part of SSiPP-FF (Line 14) would apply aJ . The former case is true since
π∗Ss,t is the ε-optimal solution and hd(si−1) = 0 < hd(ri+1) = ∞, therefore π∗Ss,t(ri) = aW . In
the latter case, if ri ∈ Gs,t, then {si, si+1} ⊂ Gs,t. Since hd(ri) = hd(si) = hd(si+1) = 0 and
C(si−1, aW , si) = 1 < C(si−1, aJ , ·) = 3, then π∗Ss,t(si−1) = aW and the value of s in Line 14 of
SSiPP-FF is si+1. Therefore, SSiPP-FF using hd always reaches the goal for t ∈ N∗. Note that
SSiPP-FF can obtain a speedup over SSiPP in the jumping chain problems if the determinization
solution can be efficiently obtained.

62 CHAPTER 5: EXTENDING SSIPP

5.4 Summary

In this chapter, we presented three extensions of SSiPP: Labeled-SSiPP, Parallel Labeled-SSiPP
and SSiPP-FF. Labeled-SSiPP improves the convergence time of SSiPP to the ε-optimal solution
by labeling states that have already ε-converged as solved. Solved states are not revisited by
the during the search for the ε-optimal solution and are also pruned from the short-sighted SSP
since an ε-optimal solution from these labeled states is already known. Parallel Labeled-SSiPP
extends Labeled-SSiPP by generating and solving multiple short-sighted SSPs in parallel. For
both Labeled-SSiPP and Parallel Labeled-SSiPP, we proved an upper bound on the number of
iterations necessary for them to converge to the ε-optimal solution.

We also introduced SSiPP-FF, a planner that combines SSiPP with determinizations in order
to compute sub-optimal solutions more efficiently. Besides improving the scalability of SSiPP,
we show how SSiPP-FF can make FF-Replan safer by avoiding dead ends within the solved
short-sighted SSPs.

In the next chapter, we present the previous work in optimal and suboptimal probabilistic
planning and how they relate to SSiPP, Labeled-SSiPP, Parallel Labeled-SSiPP and SSiPP-FF.
Then, in Chapter 7, we empirically compare our algorithms against the state-of-the-art proba-
bilistic planners.

Chapter 6

Related Work

This chapter presents a review of related work in probabilistic planning. Probabilistic planners,
i.e., algorithms that return closed policies, are reviewed in Sections 6.1 to 6.3; and replanners,
algorithms that return partial policies, are reviewed in Section 6.4. Section 6.5 presents how this
thesis fits with respect to the presented related work.

6.1 Extensions of Value Iteration

One direct extension of Value Iteration (VI), presented in Section 2.1, is Topological Value It-
eration (TVI) [Dai and Goldsmith, 2007]. TVI pre-processes the given SSP by performing a
topological analysis of the state space S. The result of this analysis is a set of the strongly con-
nected components (SCCs) and TVI solves the SSP by applying VI on each SCC in reversed
topological order, i.e., from the goals to the initial state. This decomposition can speed up the
search of ε-optimal solutions when the original SSP can be decomposed into several close-to-
equal-size SCCs. In the worst case, when the SSP has just one SSC, TVI performs worst than VI
due to the overhead imposed by the topological analysis.

To increase the chances that a problem will be decomposed in several close-to-equal-size
SCCs, Focused Topological Value Iteration (FTVI) [Dai et al., 2009] was introduced. FTVI
performs a best-first forward search in which a lower bound V for V ∗ is iteratively improved and
actions that are provably sub-optimal are removed from the original SSP. Once the R(S, V) is
small, the search is stopped and the resulting SSP is solved using TVI and V as lower bound.
Since the removed actions are always sub-optimal, FTVI returns an ε-optimal solution. In the
worst, FTVI is equivalent to TVI since there is no guarantee that any action will be removed
from the original SSP.

63

64 CHAPTER 6: RELATED WORK

6.2 Real Time Dynamic Programming and Extensions

Another extension of VI is Real Time Dynamic Programming (RTDP) [Barto et al., 1995], pre-
sented in Section 2.3.1. RTDP extends the asynchronous version of VI by using greedy search
and sampling to find the next state to perform a Bellman backup. In order to avoid being trapped
in loops and to find an ε-optimal solution, RTDP updates its lower bound V (s) of V ∗(s) on every
state s visited during the search. If Assumption 2.1 holds for the given SSP, then RTDP always
finds an ε-optimal solution after several search iterations (possibly infinitely many), i.e., RTDP is
asymptotically optimal. Differently from the VI, TVI and FTVI that compute complete policies,
RTDP returns a closed policy if ε is small enough or a partial policy otherwise.

Several extensions of RTDP have been proposed and the first one is Labeled RTDP (LRTDP)
[Bonet and Geffner, 2003]. LRTDP introduces a labeling mechanism to find states that have
already ε-converged and avoids exploring these converged states again. With this technique,
LRTDP provides an upper bound on the number of iterations necessary to find an ε-optimal
solution.

The following three algorithms also extend RTDP by maintaining a lower and an upper bound
V on V ∗ and providing different methods to direct the exploration of the state space: Bounded
RTDP (BRTDP) [McMahan et al., 2005], Focused RTDP (FRTDP) [Smith and Simmons, 2006]
and Value of Perfect Information RTDP (VPI-RTDP) [Sanner et al., 2009]. The advantage of
keeping an upper bound is that the exploration of the state space can be biased towards states s
in which the uncertainty about V ∗(s) is large, e.g., the gap between V (s) and V (s) is large.

This improved criterion to guide the search decreases the number of Bellman backups re-
quired to find an ε-optimal solution; however, each iteration of the search is considerably more
expensive due to the maintenance of the upper bound V . Although no clear dominance exists
between RTDP and its extensions, empirically it has been shown that in most of the problems:
(i) RTDP is outperformed by all its extensions; and (ii) VPI-RTDP outperforms BRTDP and
FRTDP.

The extensions of RTDP mentioned so far are concerned with improving the convergence
of RTDP to the ε-optimal solution, and ReTrASE [Kolobov et al., 2009] extends RTDP in or-
der to improve its scalability. ReTrASE achieves this by projecting V into a lower dimensional
space. The set of basis functions used by ReTrASE is obtained by solving the all-outcomes deter-
minization of the original problem (Section 2.3.2). Due to the lower dimensional representation,
ReTrASE is non-optimal.

6.3 POLICY ITERATION AND EXTENSIONS 65

6.3 Policy Iteration and Extensions

A different approach for finding ε-optimal solutions is Policy Iteration (PI) [Howard, 1960].
PI performs search in the policy space and iteratively improves the current policy until no further
improvement is possible, i.e., an optimal policy is found. Since PI was originally designed for
infinite-horizon MDPs, it returns a complete policy; therefore, when applied to SSPs, PI does not
take advantage of the initial state s0 to prune its search.

LAO* [Hansen and Zilberstein, 2001] can be seen as a version of PI which takes advan-
tage of s0 and computes ε-optimal closed policies that are potentially not complete. Precisely,
LAO* computes a closed ε-optimal policy for the sequence S0 ⊆ S1 ⊆ . . . Sk ⊆ S, where
S0 = {s0}, i.e., S0 contains only the initial state, S is the complete state space of the SSP and
Si is generated by greedily expanding Si−1. LAO* stops when Sπ

∗ ⊆ Si; therefore the closed
ε-optimal policy for Sπ∗ is also ε-optimal for the original problem. Improved LAO* (ILAO*)
[Hansen and Zilberstein, 2001] enhance LAO* performance by increasing how many states are
added to Si−1 to generate Si and performing single Bellman Backups in a depth-first postorder
traversal of Si instead of using PI or VI to compute ε-optimal solutions to Si.

6.4 Replanners

Another direction to solve probabilistic planning problem is replanning. One of the simplest, yet
powerful, replanners is FF-Replan [Yoon et al., 2007], presented in Section 2.3.2. Given a state s
(initially s equals s0) FF-Replan generates the all-outcomes determinization D of the SSP S
being solved and uses the deterministic planner FF [Hoffmann and Nebel, 2001] to solve D from
state s. The solution π for D is then applied to the S; if and when the execution of π fails in the
probabilistic environment, FF is re-invoked to plan again from the failed state. FF-Replan was
the winner of the first International Probabilistic Planning Competition (IPPC) [Younes et al.,
2005] in which it outperformed the probabilistic planners due to their poor scalability. Despite
its major success, FF-Replan is non-optimal and oblivious to probabilities and dead ends, leading
to poor performance in probabilistic interesting problems [Little and Thiébaux, 2007], e.g., the
triangle tire-domain (Section 4.1.2).

FF-Hindsight [Yoon et al., 2008] is a non-optimal replanner that generalizes FF-Replan based
on hindsight optimization. Given a state s, FF-Hindsight performs the following three steps:
(i) randomly generate a set of non-stationary deterministic problems D starting from s; (ii) use

66 CHAPTER 6: RELATED WORK

FF to solve each problem in D; and (iii) combine the cost of their solutions to estimate the
true cost of reaching a goal state from s. Each deterministic problem in D has a fixed horizon
and is generated by sampling one outcome of each probabilistic action for each time step. This
process reveals two major drawbacks of FF-Hindsight: (i) a bound in the horizon size of the
problem is needed in order to produce the relaxed problems; and (ii) rare effects of actions might
be ignored by the sampling procedure. While the first drawback is intrinsic to the algorithm, a
workaround to the second one is proposed [Yoon et al., 2010] by always adding the all-outcomes
determinization of the problem to D and, therefore, ensuring that every effect of an action appears
at least in one deterministic problem in D.

Another determinization-based replanner is HMDPP [Keyder and Geffner, 2008]. Instead of
using the all-outcomes or the most-likely outcomes, HMDPP uses the self-loop determinization,
a determinization approach that implicitly encode the probability of actions is in their costs.
Formally, given an SSP S = 〈S, s0,G,A, P, C〉, the self-loop determinization of S is the problem
D = 〈S, s0,G, Â, Ĉ〉, in which, for all s ∈ S, a ∈ A and s′ ∈ S such that P (s′|s, a) > 0,
Â contains the action a′ that deterministically transforms s into s′ and its cost Ĉ(s, a′, s′) is
C(s, a′, s′)/P (s′|s, a). Therefore, solutions for D that use low probability effect of actions are
penalized. HMDPP also pre-process the original SSP S using pattern databases [Haslum et al.,
2007] for a fixed amount of time in order to obtain a set of partial policies πdb from some states
in S to the goal. These two techniques are combined in HMDPP as follows: at a state s, if there
is a pre-computed policy πdb from s to the goal, then πdb(s) is applied; otherwise, a solution πdet
for the self-loop determinization of S is computed from s and executed until a state s′, in which
πdet is not defined, is reached. This process is repeat until a goal state is reached.

Based on solution refinement, two other non-optimal replanners were proposed: Envelope
Propagation (EP) [Dean et al., 1995] and Robust FF (RFF) [Teichteil-Koenigsbuch et al., 2008].
In general terms, EP and RFF compute an initial partial policy π and iteratively expand it in order
to avoid replanning. EP performs state aggregation by selecting a set of states Ŝ and replacing
them by a meta state out. Set of states Ŝ is obtained by finding states that have low probability
of being reached and also have an expected cost larger than the current state. The obtained state
space S′ equals out∪(S\Ŝ) and special actions are also added to the aggregated SSP to represent
transitions between S′ and the meta state out. At each iteration, EP refines its approximation
S′ of S by selecting states ŝ ∈ Ŝ and adding them to S′. After S′ is expanded, a new round of
aggregation is performed in order to avoid the convergence of S′ to S. If a state ŝ ∈ Ŝ needs to be
avoided, e.g., high cost states and dead ends, then EP is unable to take that signal into account to
effectively avoid them.

6.4 REPLANNERS 67

RFF, the winner of the third IPPC [Bryce and Buffet, 2008], uses a different approach for
solution refinement: an initial partial policy π is computed by solving the most-likely outcome
determinization of the original problem using FF and then the robustness of π is iteratively im-
proved. For RFF, robustness is defined as the probability of replanning, i.e., given ρ ∈ [0, 1],
RFF computes π such that the probability of replanning when following π from s0 is at most ρ.
Since computing the probability of replanning when following π is costly, RFF approximates it
by performing Monte-Carlo simulations.

An orthogonal direction from all other approaches mentioned so far is applied by t-look-
ahead [Pearl, 1985, Russel and Norvig, 2003] and Upper Confidence bound for Trees (UCT)
[Kocsis and Szepesvri, 2006]. The approach employed by these algorithms is to relax SSPs into
finite-horizon MDPs with goals, i.e., to modify horizon of the SSP from indeterminate to finite.
T -look-ahead fixes the horizon of the relaxed problem to t time steps and solves it using dynamic
programming (Chapter 2).

UCT is an approximation of the t-look-ahead obtained by using sparse sampling techniques.
Formally, UCT iteratively builds a policy tree by expanding the best node according to a biased
version of the Bellman equations (Equation (2.2) p.12) to ensure that promising actions are sam-
pled more often. Notice that UCT, as t-look-ahead, builds a policy tree, i.e., a policy free of
loops, since the horizon of the problem is relaxed from indefinite to finite of size t. While UCT
does not require the search depth parameter t, it is governed by two other parameters: w the
number of samples per decision step and c the weight of the bias term for choosing actions. UCT
is the base of PROST [Keller and Eyerich, 2012], the winner of IPPC 2011 [Coles et al., 2012].

In the context of motion planning in dynamic environments, another relevant approach is
Variable Level-of-Detail (VLOD) [Zickler and Veloso, 2010] planning and execution. VLOD
computes a collision-free trajectory from an initial state to the goal by ignoring the physical
interactions with poorly predictable dynamic objects in the far future. Formally, VLOD computes
a plan in which: (i) all actions applicable from the initial state (time t = 0) until a given time
threshold tLOD consider the original model of the world; and (ii) all actions applicable at time
t > tLOD consider a relaxed model M̂ of the world. This relaxed model M̂ simplifies the problem
by ignoring the collisions between the agent and the other dynamic objects in the environment,
e.g., the agent is able to pass through other moving agents and objects in M̂ . Therefore, VLOD
can efficiently compute a plan that locally avoids collisions while still taking in consideration the
goal set in order to be robust against local minima.

For planning with incomplete information, a relevant approach is assumptive planning and

execution [Nourbakhsh and Genesereth, 1996]. In this approach, the uncertainty of execution
is decreased by making simplifying assumptions, for instance, if the initial state s0 is partially

68 CHAPTER 6: RELATED WORK

defined, then one possible simplifying assumption is to instantiate some of the undefined state
variables. Planning and execution is then interleaved through a replanning loop: (i) given the
current a set of possible states b, a smaller set b̂ is obtained by making additional assumptions
about b; (ii) a conditional plan C from b̂ to the goal G is computed; (iii) C is executed in the en-
vironment; and (iv) both b and b̂ are updated according to the actions applied in the environment.
When and if b̂ is inconsistent, then replanning is applied using the new current incomplete state
b. The authors also provide sufficient conditions over the simplifying assumptions to guarantee
that this replanning approach is sound and complete.

6.5 How our Work Fits

Table 6.1 summarizes the related work and provides an overview of how this thesis fits with
respected to the related work.

This thesis presents a novel relaxation technique for probabilistic planning, the short-sighted
SSPs. Short-sighted SSPs relax probabilistic planning problems by pruning the state space and
adding artificial goals to heuristically estimate the cost of reaching an original goal from the
pruned states. The usage of artificial goals is the key difference between short-sighted SSPs and
the state space aggregation performed by EP. Since a heuristic cost is incurred when an artificial
goal is reached, the solutions of short-sighted SSPs can be effectively biased towards the original
goals and away from high-costs areas of the state space.

Short-sighted SSPs also differ from determinizations because they do not change the action
structure. Therefore all effects of actions are considered and their probabilities are not ignored.
Similarly, short-sighted SSPs differ from VLOD and assumptive planning and execution because
they neither simplify the model in the far future nor make additional assumptions to reduce
uncertainty. Instead, short-sighted SSPs use a heuristic to estimate the cost of reaching the goal
from the artificial goals and preserve the original action structure. These features allow SSiPP
to iteratively improve the given heuristic until it ε-converges to the optimal solution of the SSP
begin solved. Notice that the determinization approaches, VLOD, and assumptive planning are
not able to compute ε-optimal solutions of SSPs.

Depth-based short-sighted SSPs, one formulation of short-sighted SSPs, also presents a novel
property with respect to the previous work: closed policies for (s, t)-depth-based short-sighted
SSPs can be applied to the original SSP for at least t steps without replanning. The replanners
reviewed in Section 6.4 do not guarantee how many steps their partial policies can be applied
before replanning is needed.

6.5 HOW OUR WORK FITS 69

Pl
an

ne
r

O
pt

im
al

Po
lic

y
C

om
-

U
se

s
Si

m
pl

ifi
ca

tio
n

A
pp

ro
ac

h
pu

te
d

is
H

eu
r.

ap
pl

ie
d

V
al

ue
It

er
at

io
n

ye
s

co
m

pl
et

e
ye

s
–

dy
na

m
ic

pr
og

ra
m

m
in

g
To

po
lo

gi
ca

lV
I

dy
na

m
ic

pr
og

ra
m

m
in

g
an

d
to

po
lo

gi
ca

la
na

ly
si

s
Fo

cu
se

d
To

po
lo

gi
ca

lV
I

ac
tio

n
el

im
in

at
io

n
Po

lic
y

It
er

at
io

n
no

–

dy
na

m
ic

pr
og

ra
m

m
in

g
L

A
O

*

cl
os

ed
ye

s

dy
na

m
ic

pr
og

ra
m

m
in

g
an

d
an

d/
or

gr
ap

h
se

ar
ch

IL
A

O
*

dy
n.

pr
og

.,
an

d/
or

gr
ap

h
se

ar
ch

an
d

to
po

lo
gi

ca
la

na
ly

si
s

R
T

D
P

dy
na

m
ic

pr
og

ra
m

m
in

g
L

ab
el

ed
R

T
D

P
dy

na
m

ic
pr

og
ra

m
m

in
g

an
d

la
be

lin
g

B
ou

nd
ed

R
T

D
P

dy
na

m
ic

pr
og

ra
m

in
g

an
d

up
pe

rb
ou

nd
s

Fo
cu

se
d

R
T

D
P

V
PI

-R
T

D
P

R
eT

rA
SE

no

st
at

e
sp

ac
e

pr
oj

ec
tio

n
dy

na
m

ic
pr

og
ra

m
m

in
g

E
nv

el
op

e
Pr

op
ag

at
io

n

pa
rt

ia
l

no

st
at

e
sp

ac
e

ag
gr

eg
at

io
n

an
d

so
lu

tio
n

re
fin

em
en

t
FF

-R
ep

la
n

ac
tio

n
sp

ac
e

de
te

rm
in

iz
at

io
n

FF
-H

in
ds

ig
ht

de
te

rm
in

iz
at

io
n

an
d

hi
nd

si
gh

to
pt

im
iz

at
io

n
R

ob
us

tF
F

de
te

rm
in

iz
at

io
n

an
d

so
lu

tio
n

re
fin

em
en

t
H

M
D

PP
ye

s
de

te
rm

in
iz

at
io

n
an

d
pa

tte
rn

da
ta

ba
se

L
oo

k
ah

ea
d

ho
ri

zo
n

lo
ca

ls
ea

rc
h

U
C

T
ye

s
lo

ca
ls

ea
rc

h
an

d
sp

ar
se

sa
m

pl
in

g
SS

iP
P

ye
s

cl
os

ed
ye

s
st

at
e

sp
ac

e
sh

or
t-

si
gh

te
d

pl
an

ni
ng

L
ab

el
ed

-S
Si

PP
sh

or
t-

si
gh

te
d

pl
an

ni
ng

an
d

la
be

lin
g

Pa
ra

lle
lL

ab
el

ed
-S

Si
PP

SS
iP

P-
FF

no
pa

rt
ia

l
st

at
e

an
d

ac
tio

n
sp

ac
e

sh
or

t-
si

gh
te

d
pl

an
ni

ng
an

d
de

te
rm

in
iz

at
io

n

Ta
bl

e
6.

1:
Su

m
m

ar
y

of
th

e
re

la
te

d
w

or
k

an
d

ho
w

ou
r

w
or

k
fit

s
in

.
Fo

r
ea

ch
pl

an
ne

r
it

is
sh

ow
n:

if
it

is
op

tim
al

or
no

n-
op

tim
al

;t
he

ty
pe

of
po

lic
y

co
m

pu
te

d;
if

th
e

pl
an

ne
ri

s
ab

le
to

us
e

st
at

e
sp

ac
e

he
ur

is
tic

s
H

(s
);

th
e

si
m

pl
ifi

ca
tio

n
ap

pl
ie

d
to

m
an

ag
e

th
e

un
ce

rt
ai

nt
y

st
ru

ct
ur

e
of

th
e

pr
ob

le
m

s;
an

d
th

e
ov

er
al

la
pp

ro
ac

h
em

pl
oy

ed
by

th
e

pl
an

ne
r.

70 CHAPTER 6: RELATED WORK

Chapter 7

Empirical Evaluation

In this chapter, we present a rich empirical comparison between the proposed algorithms and
state-of-the-art probabilistic planners and replanners. We begin by reviewing the domains and
problems used in the experiments. Next, in Section 7.2, we present a series of experiments
to evaluate the convergence time to the ε-optimal solution of SSiPP, Labeled-SSiPP, and other
optimal planners. In Section 7.3, we simulate an International Probabilistic Planning Competi-
tion (IPPC) [Younes et al., 2005, Bonet and Givan, 2007, Bryce and Buffet, 2008] using SSiPP,
Labeled-SSiPP, SSiPP-FF, previous IPPC winners and other state-of-the-art planners as contes-
tants.

7.1 Domains and Problems

In this section, we present the four domains from IPPC’08 [Bryce and Buffet, 2008] which we use
in our experiments.1 The first two domains, probabilistic blocks world (Section 7.1.1) and zeno
travel (Section 7.1.2), are probabilistic extensions of their deterministic counterparts. Triangle
tire world (Section 7.1.3) and exploding blocks world (Section 7.1.4) are probabilistic interesting
problems [Little and Thiébaux, 2007], i.e., problems in which approaches that oversimplify the
probabilistic structure of the actions perform poorly.

7.1.1 Probabilistic Blocks World

The probabilistic blocks world is an extension of the well-known blocks world in which the
actions pick-up and put-on-block can fail with probability 1/4. If and when these actions fail,
the target block is dropped on the table, for instance, pick-up A from B results in block A being

1All problems from IPPC’08 are available at http://ippc-2008.loria.fr/wiki/index.php/Results.html

71

72 CHAPTER 7: EMPIRICAL EVALUATION

Problem # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of blocks 5 10 14 18
Cost of pick-up 1 2 2 3 1 2 2 4 1 2 2 4 1 2 4
Cost of pick-up-from-table 1 2 3 2 1 2 3 3 1 2 3 3 1 2 3

Table 7.1: Number of blocks and the cost of actions pick-up and pick-up-from-table for each
of the 15 problems considered from the probabilistic blocks world.

on the table with probability 1/4. The action pick-up-from-table also fails with probability
1/4, in which case nothing happens, i.e., the target block remains on the table. Lastly, the action
put-down deterministically puts the block being held on the table.

This probabilistic version of blocks world also contains three new actions that allow towers
of two blocks to be manipulated: pick-tower, put-tower-on-block and put-tower-down.
While action put-tower-down deterministically puts the tower still assembled on the table, the
other two actions are probabilistic and fail with probability 9/10. The current state is not changed
when pick-tower fails and put-tower-on-block fails by dropping the tower on the table (the
dropped tower remains built).

Since every action in the probabilistic blocks world is reversible, the goal is always reach-
able from any state; therefore Assumption 2.1 holds for all problems in this domain. The ac-
tions put-on-block, put-down, pick-tower, put-tower-on-block and put-tower-down have
cost 1. In order to explore the trade-offs between: (i) putting a block on top of other blocks versus
putting a block on the table; and (ii) picking up a single block versus a tower of blocks, the cost
of pick-up and pick-up-from-table actions is different for each problem. Table 7.1 shows
the total number of blocks and the cost of both pick-up and pick-up-from-table actions for
the 15 problems considered. In all the considered problems, the goal statement contains all the
blocks. For the remainder of this chapter, we refer to the probabilistic blocks worlds as blocks
world.

7.1.2 Zeno Travel

The zeno travel domain is a logistic domain in which a given number of people need to be
transported from their initial locations to their destinations using a fleet of airplanes. Moreover,
the level of fuel of each airplane is also modeled and therefore there is a need to plan to refuel.

The available actions in this domain are: boarding, debarking, refueling, flying (at regular
speed) and zooming (flying at a faster speed). Each action has a random duration modeled by
a geometrically distributed random variable with probability p; the expected duration of each
action, i.e., the number of time steps necessary to succeed, is 1/p. In order to ensure the ge-

7.1 DOMAINS AND PROBLEMS 73

Problem # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cities 4 5 5 6 6 7 7 8 9 10 11 13 14 15 20
Persons 2 2 5 2 5 10 5 5 10 5 10 5 10 10 10
Airplanes 2 2 3 2 3 6 3 3 6 3 6 3 6 6 6

Table 7.2: Number of cities, persons and airplanes for each of the 15 problems considered of the
zeno travel domain.

ometric duration of the available actions, they are represented by a two-step procedure, e.g.,
start-boarding and finish-boarding, in which the first step is always deterministic and the
second step succeeds with probability p. The value of p is 1/2, 1/4, 1/7, 1/25 and 1/15 for
boarding, debarking, refueling, flying and zooming, respectively.

The cost of all actions is 1 except for actions flying and zooming that have costs 10 and 25 re-
spectively. Although the fuel requirement for flying and zooming is the same, their expected cost
differ due to their different costs and success probabilities: 250 for flying and 375 for zooming.

As in the blocks world domain, Assumption 2.1 holds for all problems in zeno travel do-
main. Table 7.2 shows the number of persons, cities and airplanes for each of the 15 problems
considered. In all the considered problems, the fuel level of each airplane is discretized into 5
categories: empty, 1/4, 1/2, 3/4 and full.

7.1.3 Triangle Tire World

The triangle tire world, described in Section 4.1.2, is a probabilistically interesting domain with
avoidable dead ends. In the experiments, the problem number corresponds to the parameter n of
the triangle tire world problem.

7.1.4 Exploding Blocks World

The exploding blocks world is a probabilistic extension of the deterministic blocks world in
which blocks can explode and destroy other blocks or the table. Once a block or the table is
destroyed, nothing can be placed on them and destroyed blocks cannot be moved. Therefore, it
is possible to reach dead ends in the exploding blocks world. Moreover, not all problems in the
exploding blocks world domain have a proper policy, i.e., these problems might have unavoidable
dead ends.

All actions available in the exploding blocks world, pick-up, pick-up-from-table, put-down
and put-on-block, have the same effects as their counterparts in the deterministic blocks world.
Pick-up and pick-up-from-table have the extra precondition that the block being picked up

74 CHAPTER 7: EMPIRICAL EVALUATION

Problem # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of blocks 5 6 7 8 9 10 11 12 13 14 15 16 17
Blocks in the goal 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 7.3: Number of blocks and blocks in the goal statement for each of the 15 problems
considered from the exploding blocks world.

is not destroyed. Actions put-down and put-on-block have the probabilistic side-effect of det-
onating the block being held and destroying the table or the block below with probability 2/5

and 1/10, respectively. Once a block is detonated, it can be safely moved, i.e., a denoted block
cannot destroy other blocks or the table.

The IPPC’08 encoding of the exploding blocks world has a flaw in which a block can be
placed on top of itself [Little and Thiébaux, 2007]. This flaw allows planners to safely discard
blocks not needed in the goal because, after placing a block B on top of itself: (i) no block is
being held, i.e., the planner is free to pick up another block; and (ii) only B might be destroyed,
thus preserving the other blocks and the table. We consider the fixed version of the IPPC’08
exploding blocks world, in which the action put-on-block has the additional precondition that
the destination block is not the same as the block being held; precisely, we added the precondition
(not (= ?b1 ?b2)) to put-on-block(?b1 ?b2).

Table 7.3 shows the total number of blocks and blocks in the goal statement for the 15 ex-
ploding blocks world problems considered. In the considered problems, all actions have cost 1.

7.2 Convergence to the Optimal Solution

In the following experiments, we compare the time necessary for LRTDP [Bonet and Geffner,
2003], Focused Topological Value Iteration (FTVI) [Dai et al., 2009], SSiPP and Labeled-SSiPP
to ε-converge to the optimal solution. SSiPP-FF is not considered since it is not guaranteed to
converge to an ε-optimal solution. For the experiments in Section 7.2.1, we use the domains
from IPPC’08 (reviewed in Section 7.1) and, in Section 7.2.2, we use the race-track domain, a
common domain to compare optimal probabilistic planners.

7.2.1 Problems from the International Probabilistic Planning Competition

In this experiment, we compare the time to converge to the ε-optimal solution for the problems
in the IPPC’08 (Section 7.1). Although Assumption 2.1 does not hold for the triangle tire world
(Section 7.1.3), all problems in this domain are such that: (i) there exists a proper (but not
complete) policy; and (ii) the dead ends are states in which no action is available. Therefore, all

7.2 CONVERGENCE TO THE OPTIMAL SOLUTION 75

the considered planners can trivially detect when a dead end sd is reached, in which case V (sd)

is updated to infinity and the search is restarted. For this experiment, the value assigned to V (sd)

is 105; this value is large enough since V ∗(s0) < 12n for the triangle tire world problem of size
n. The exploding blocks world problems are not considered because there is no guarantee they
have a closed policy.

This experiment was conducted on a 2.4GHz machine with 16 cores running a 64-bit ver-
sion of Linux. The time and memory cutoff enforced for each planner was 2 hours and 5GB
respectively. For SSiPP and Labeled-SSiPP, we used LRTDP as ε-OPTIMAL-SSP-SOLVER and
depth-based short-sighted SSPs for t ∈ {2, 4, 8, 16, 32}. The admissible heuristic used by all
the planners is the classical planning heuristic hmax applied to the all-outcomes determinization
[Teichteil-Königsbuch et al., 2011].

Table 7.4 presents the results of this experiment as the average and 95% confidence inter-
val of the ε-convergence time for 50 runs of each planner parametrization. From the 15 prob-
lems of each domain, we only present the results in which at least one planner ε-converged
to the optimal solution. The problems 5′ to 8′ for blocks world are problems with 8 blocks
obtained by removing blocks b9 and b10 from the original IPPC’08 problems 5 to 8. We gener-
ated these problems since no planner converged to the optimal solution for problems 5 to 8 and
problems 1 to 4 are too small (ε-convergence is reached in about 1s).

The performance difference between SSiPP and Labeled-SSiPP is not significant for small
problems, i.e., blocks world 1 to 4, triangle tire world problems 1 and 2 and zeno travel prob-
lem 1 and 2. For the triangle tire world problems 3 and 4, t = 32 is large enough that the
optimal solution is found using a single short-sighted SSP, therefore the performance of SSiPP
and Labeled-SSiPP for t = 32 is equivalent to the LRTDP performance. For the same prob-
lems, when t < 32, Labeled-SSiPP reaches convergence using between 6% to 32% of the of the
convergence time of SSiPP for the value of t.

In the triangle tire world, the best parametrization of Labeled-SSiPP is not able to outperform
LRTDP, the best planner in this domain, due to the overhead of building the short-sighted SSPs.
This problem is specific to the triangle tire domain, since there is only one proper policy; there-
fore, a planner that prunes improper policies can efficiently focus its search in the single optimal
policy of the triangle tire world problems. For instance, the (s0, 16)-short-sighted SSP Ss0,16 as-
sociated with problem 4 of the triangle tire world contains 124436 states and Ss0,16 is generated
and solved on every iteration of Line 5 of Labeled-SSiPP (Algorithm 5.2), even after inferring
that Ss0,16 also contains only one proper policy. As shown in Section 4.1.2, trajectory-based
short-sighted SSPs can be used in order to overcome this issue.

76 CHAPTER 7: EMPIRICAL EVALUATION

B
locks

W
orld

Problem
1

2
3

4
5’

6’
7’

8’

SSiPP
2

1.11
±
0.0

1.23
±
0.1

1
.4
4
±
0.1

1.1
5
±
0.0

2
6
8
9
.2
±
6
6.9

3
0
1
8.8
±
3
9
.6

3278.5
±
60
.3

3758
.2
±
72.3

4
0.78

±
0.0

0.82
±
0.0

1
.0
1
±
0.0

0.8
4
±
0.0

2
5
2
5
.8
±
5
4.8

2
8
8
3.7
±
4
9
.7

3044.5
±
46
.1

3237
.7
±
50.4

8
0.37

±
0.0

0.53
±
0.0

0
.8
8
±
0.1

0.4
6
±
0.0

3
2
4
3
.3
±
6
9.1

3
5
5
0.1
±
6
6
.8

3586.9
±
77
.3

3597
.1
±
51.4

16
0.22

±
0.0

0.29
±
0.0

0
.2
9
±
0.0

0.2
7
±
0.0

5
8
1
.6
±
7.4

6
6
5
.0
±
8.3

701
.6
±
9
.1

726
.7
±
11.1

32
0.23

±
0.0

0.26
±

0.0
0.28
±

0.0
0.2

7
±
0.0

6
9
9
.4
±
1
1.1

8
4
0
.8
±
1
1
.1

877
.5
±
14
.2

968
.5
±
16.8

L-SSiPP

2
1.03

±
0.0

1.15
±
0.0

1
.3
0
±
0.0

1.1
2
±
0.0

2
3
8
5
.9
±
1
8.8

2
7
7
6.7
±
2
1
.9

2973.7
±
29
.2

3275
.1
±
28.9

4
0.82

±
0.0

0.88
±
0.0

1
.0
0
±
0.0

0.8
5
±
0.0

2
3
4
6
.8
±
2
3.1

2
6
1
7.2
±
2
0
.8

2847.3
±
27
.2

2972
.5
±
28.2

8
0.39

±
0.0

0.54
±
0.0

0
.7
7
±
0.0

0.4
1
±
0.0

2
8
9
3
.6
±
2
9.3

3
3
8
0.7
±
4
6
.1

3051.6
±
54
.8

3332
.1
±
48.8

16
0.26

±
0.0

0.30
±
0.0

0
.2
8
±
0.0

0.2
7
±
0.0

508.7
±

4.2
590.6

±
3.3

650.0
±

5.9
672.3

±
6.0

32
0.22
±

0.0
0.27

±
0.0

0
.3
0
±
0.0

0.26
±

0.0
6
9
1
.0
±
5.4

8
0
8
.7
±
4.0

851
.8
±
7
.7

970
.9
±
9.7

L
R

T
D

P
0.23

±
0.0

0.28
±
0.0

0
.3
0
±
0.0

0.2
6
±
0.0

6
3
9
.6
±
4.9

7
5
8
.7
±
4.4

813
.1
±
6
.5

915
.0
±
7.5

FT
V

I
0.71

±
0.0

0.88
±
0.0

1
.0
2
±
0.0

0.9
7
±
0.0

-
2
3
0
2.7
±
2
1
.0

2553.9
±
32
.0

3081
.0
±
34.1

Triangle
Tire

W
orld

Z
eno

Travel
Problem

1
2

3
4

5
1

2
4

SSiPP

2
0.0

3
±
0.0

0
.82
±
0.1

2
8
.6
±
5.3

7
0
5
.7
±
4
9.1

-
1
3
2
5.8
±
51
.6

1367
.3
±
31.1

-
4

0.0
3
±
0.0

0
.48
±
0.1

2
3
.5
±
2.1

4
6
7
.7
±
3
5.6

-
5
5
9
.8
±
24
.0

837
.6
±
27.5

-
8

0.02
±

0.0
0
.56
±
0.1

3
0
.3
±
5.0

6
0
1
.6
±
6
4.3

-
1
9
7
.9
±
8
.7

303
.3
±
22.2

-
16

0.0
2
±
0.0

0
.04
±
0.0

6
4
.3
±
7.6

-
-

3
4.0
±
1
.2

45
.7
±
0.8

-
32

0.0
2
±
0.0

0
.04
±
0.0

0.5
1
±
0.0

1
3
.2
±
0.4

-
2
1
7
.7
±
7
.6

255
.5
±
5.2

-

L-SSiPP

2
0.0

3
±
0.0

0
.33
±
0.0

6.7
7
±
0.2

2
2
7
.6
±
7.8

-
1
5
8
9.7
±
45
.9

1921
.7
±
41.6

-
4

0.0
2
±
0.0

0
.15
±
0.0

2.7
7
±
0.1

1
1
4
.3
±
8.3

-
5
7
1
.4
±
24
.0

826
.0
±
21.2

-
8

0.0
2
±
0.0

0
.14
±
0.0

2.0
8
±
0.2

7
9
.1
±
8.8

-
2
1
0
.8
±
12
.3

295
.4
±
17.8

-
16

0.0
2
±
0.0

0
.05
±
0.0

3.6
8
±
0.1

2
9
7
.2
±
1
8.2

3
7
8
0.0
±
5
0
.4

33.5
±

0.6
45.4
±

1.6
-

32
0.0

2
±
0.0

0
.05
±
0.0

0.5
0
±
0.0

1
2
.4
±
0.1

-
2
1
0
.6
±
7
.2

247
.8
±
4.4

5370.2
±

93.2
L

R
T

D
P

0.0
2
±
0.0

0.04
±

0.0
0.33
±

0.0
8.45
±

0.0
391.2

±
4.4

5
9
1
.9
±
15
.1

1391
.8
±
19.6

-
FT

V
I

0.0
3
±
0.0

0
.11
±
0.0

2.3
1
±
0.1

6
9
.7
±
0.4

3
0
1
4.7
±
3
8
.8

-
-

-

Table
7.4:

R
esults

of
the

ε-convergence
experim

ent
for

the
IPPC

dom
ains.

E
ach

cell
represents

the
average

and
95%

confidence
intervalof

the
tim

e,in
seconds,to

converge
to

the
ε-optim

alsolution
using

ε
=

10
−
4.

If
ε-convergence

is
notreached,then

’-’
is

show
n.B

estperform
ance

overallplanners
(colum

n)is
show

n
in

bold
font.

h
m

ax
heuristic

w
as

used
by

allplanners.Problem
s

5
′to

8
′

ofblocks
w

orld
are

the
IPPC

’08
problem

s
5

to
8

w
ithoutblocks

b9
and

b10.

7.2 CONVERGENCE TO THE OPTIMAL SOLUTION 77

For the larger problems of the blocks world (5′ to 8′), Labeled-SSiPP obtains a large im-
provement over the considered planners and converged in at most 0.93, 0.80 and 0.26 of the
time necessary for SSiPP, LRTDP and FTVI to converge, respectively. Lastly, in the zeno travel
domain, SSiPP and Labeled-SSiPP obtain a similar performance in the small problems, i.e.,
problems 1 and 2, and converge in at most 0.06 of LRTDP convergence time. Notice that FTVI
fails to converge in all the zeno travel problems and Labeled SSiPP for t = 32 is the only planner
able to converge for problem 4 of the zeno travel domain.

7.2.2 Race-track problems

The goal of a problem in the race-track domain [Barto et al., 1995, Bonet and Geffner, 2003] is
to move a car from its initial location to one of the goal locations, while minimizing the expected
cost of travel. A state in the race-track domain is the tuple (x, y, vx, vy, b) in which:

• x and y are the position of the car in the given 2-D grid (track);

• vx and vy are the velocities in each dimension; and

• b is a binary variable that is true if the car is broken.

At each time step, the position (x, y) of the car is updated by adding its current speed (vx, vy)

on their respective dimension. Acceleration actions, represented by pairs (ax, ay) ∈ {−1, 0, 1}2

and denoting the instantaneous acceleration in each direction, are available to control the car’s
velocity. An acceleration action (ax, ay) can fail with probability 0.1, in which case the car’s
velocity is not changed.

If the car attempts to leave the race track, then it is placed in the last valid position before
exiting the track, its velocity in both directions is set to zero and it is marked as broken, i.e., b is
set to true. The special action fix-car is used in order to fix the car (i.e., set b to false). The cost
of fix-car is 50 while the acceleration actions have cost 1.

We consider six race-tracks in this experiment: ring-small, ring-large, square-small, square-
large, y-small and y-large. The shape of each track is depicted in Figure 7.1 and Table 7.5
presents their corresponding state space size |S|, ratio of relevant states (i.e., |Sπ∗|/|S|), largest
parameter t, tmax, for depth-based short-sighted SSPs such that π∗s0,tmax

is not closed for the
original SSP, and V ∗(s0).

The admissible heuristic used by all the planners is the min-min heuristic hmin and hmin(s)

equals the cost of the optimal plan for reaching a goal state from s in the all-outcomes deter-

78 CHAPTER 7: EMPIRICAL EVALUATION

Figure 7.1: Shape of the race-tracks used in the ε-convergence experiment. Each cell represents
a possible position of the car. The initial position and the goal positions are, respectively, the
marked cells in the bottom and top of each track.

problem |S| % rel. tmax V ∗(s0) hmin(s0) time hmin(s0)

ring-s 4776 12.91 74 21.85 12.00 0.451
ring-l 75364 14.34 869 36.23 24.00 32.056

square-s 42396 2.01 71 18.26 11.00 14.209
square-l 193756 0.75 272 22.26 13.00 145.616
y-small 101481 10.57 114 29.01 18.00 32.367
y-large 300460 9.42 155 32.81 21.00 211.891

Table 7.5: Description of each race-track used in the ε-convergence experiment. The columns
represent: size of the state space |S|, ratio Sπ

∗
/S, tmax, V ∗(s0), value of the min-min heuristic

for s0 (hmin(s0)) and time in seconds to compute hmin(s0).

minization. Therefore, hmin can be computed by the following fixed point equations:

hmin(s) =

0 if s ∈ G

min
a∈A

min
s′ : P (s′|s,a)>0

[C(s, a, s′) + hmin(s
′)] otherwise

.

This experiment was conducted on a 3.07GHz machine with 4 cores running a 32-bit ver-
sion of Linux. A time cutoff of 2 hours and 4GB of memory was applied to each planner.
For SSiPP and Labeled-SSiPP, we used LRTDP as ε-OPTIMAL-SSP-SOLVER and depth-based
short-sighted SSPs for t ∈ {4, 8, 16, . . . , 1024}. FTVI is not considered in this experiment be-
cause the implementation of FTVI we had access to is not compatible with the encoding of the
racetrack problems. Table 7.6 presents the results as the average and 95% confidence interval for
10 runs of each planner parametrization.

7.2 CONVERGENCE TO THE OPTIMAL SOLUTION 79

t
R

in
g-

Sm
al

l
R

in
g-

L
ar

ge
Sq

ua
re

-S
m

al
l

Sq
ua

re
-L

ar
ge

Y
-S

m
al

l
Y

-L
ar

ge

SSiPP

4
23
.5
0
±
8.
53

25
5
9
.1
6
±
8
4
9
.0
9

2
7
.4
4
±
2.
6
1

7
9
9
.1
1
±
3
2.
4
7

1
7
6
2.
1
8
±
7
4.
3
2

4
0
8
6.
5
3
±
2
3
5
.6
5

8
7
.3
9
±
2.
73

74
5
.5
2
±
3
4
1
.5
1

3
0
.2
6
±
3.
7
1

8
4
4
.1
8
±
5
3.
8
6

7
7
7
.9
9
±
5
8.
1
2

3
8
4
8.
7
5
±
2
2
7
.4
0

16
0
.6
4
±
0.
02

61
2
.9
9
±
2
6
1
.5
3

1
8
.6
6
±
2.
2
2

8
1
1
.2
7
±
5
9.
3
9

8
6
1
.1
7
±
9
4.
5
7

3
5
1
7.
1
3
±
2
1
5
.1
4

32
0
.6
0
±
0.
02

64
.1
0
±
1
0
.4
7

1
7
.8
8
±
1.
9
9

6
9
3
.1
8
±
1
9.
5
6

5
7
.0
3
±
1.
2
9

2
9
8
7.
8
1
±
2
0
7
.4
7

64
0.

59
±

0.
02

62
.8
6
±
6.
8
8

1
7
.5
6
±
0.
5
5

6
4
2
.2
8
±
1
2.
6
0

5
7
.2
5
±
1.
8
4

3
2
0
.7
5
±
9.
5
7

12
8

0
.6
1
±
0.
01

63
.0
5
±
7.
1
5

1
7
.4
4
±
0.
5
9

6
3
1
.8
9
±
3
1.
8
9

5
5
.4
6
±
1.
0
6

3
1
5
.6
8
±
9.
2
9

25
6

0
.6
1
±
0.
01

64
.2
5
±
0.
8
9

1
7
.6
5
±
0.
6
6

6
3
9
.5
1
±
1
5.
2
1

5
5
.8
6
±
1.
4
9

3
1
9
.1
4
±
9.
1
0

51
2

0
.6
1
±
0.
02

61
.4
2
±
2.
0
9

1
8
.3
5
±
0.
5
8

6
9
0
.7
3
±
1
2.
2
5

5
5
.7
9
±
2.
7
8

3
2
1
.4
8
±
9.
9
0

10
24

0
.6
1
±
0.
01

58
.3
9
±
2.
4
0

1
8
.0
8
±
0.
4
9

6
9
8
.3
3
±
1
6.
9
0

5
5
.7
8
±
1.
9
8

3
2
0
.6
8
±
8.
2
2

LabeledSSiPP

4
1
.8
5
±
0.
08

36
3
.6
5
±
1
1
.5
7

2
4
.6
3
±
1.
0
2

7
6
3
.5
6
±
4
7.
2
5

4
2
5
.4
2
±
6
7.
6
7

2
8
1
0.
2
7
±
7
7
.6
6

8
1
.8
9
±
0.
13

46
3
.3
1
±
3
8
.6
7

2
5
.8
7
±
2.
2
9

8
1
0
.4
4
±
9
4.
3
5

3
6
8
.4
3
±
7
4.
9
0

2
8
5
8.
9
6
±
6
8
.4
7

16
0
.6
5
±
0.
03

42
9
.9
5
±
2
8
.9
6

1
8
.6
6
±
0.
5
0

7
3
7
.4
6
±
9
6.
4
3

3
0
2
.9
7
±
3
5.
4
0

2
7
0
0.
8
1
±
6
9
.4
4

32
0
.6
0
±
0.
02

60
.8
9
±
3.
6
7

1
7
.8
4
±
0.
3
6

6
5
4
.3
0
±
4
0.
8
1

5
6
.6
5
±
2.
2
2

3
1
9
.3
0
±
9.
7
4

64
0
.6
1
±
0.
01

60
.0
8
±
3.
1
2

16
.1

5
±

0.
25

6
3
1
.7
8
±
3
9.
4
2

51
.6

1
±

2.
68

3
1
1
.4
4
±
8.
2
6

12
8

0
.6
1
±
0.
02

59
.8
9
±
3.
1
4

1
6
.7
2
±
0.
3
5

61
2.

78
±

30
.4

4
5
5
.6
0
±
2.
1
7

30
7.

45
±

5.
66

25
6

0
.6
1
±
0.
02

58
.0
5
±
3.
2
3

1
7
.9
7
±
0.
7
2

6
2
3
.8
5
±
1
2.
5
8

5
6
.5
8
±
2.
3
4

3
1
6
.5
6
±
7.
5
5

51
2

0
.6
1
±
0.
01

57
.2
0
±
3.
4
9

1
8
.6
5
±
0.
5
0

7
0
3
.2
1
±
1
0.
4
6

5
5
.9
9
±
2.
5
0

3
1
9
.9
4
±
7.
2
9

10
24

0
.6
1
±
0.
01

58
.7
4
±
3.
8
8

1
8
.9
8
±
0.
5
3

7
0
1
.6
3
±
1
1.
9
5

5
5
.6
6
±
1.
9
3

3
1
9
.7
1
±
8.
6
2

L
R

T
D

P
0.

59
±

0.
02

55
.8

1
±

2.
92

1
8
.6
0
±
0.
8
4

7
0
2
.4
2
±
1
2.
8
2

5
4
.0
0
±
2.
2
0

3
1
9
.0
8
±
8.
3
5

Ta
bl

e
7.

6:
R

es
ul

ts
of

th
e
ε-

co
nv

er
ge

nc
e

ex
pe

ri
m

en
tf

or
th

e
ra

ce
tr

ac
k

do
m

ai
n.

E
ac

h
ce

ll
re

pr
es

en
ts

th
e

av
er

ag
e

an
d

95
%

co
nfi

de
nc

e
in

te
rv

al
of

th
e

tim
e,

in
se

co
nd

s,
to

co
nv

er
ge

to
th

e
op

tim
al

so
lu

tio
n

us
in

g
ε

=
10
−
4
.

B
es

tp
er

fo
rm

an
ce

ov
er

al
lp

la
nn

er
s

(c
ol

um
n)

is
sh

ow
n

in
bo

ld
fo

nt
.T

he
m

in
-m

in
he

ur
is

tic
w

as
us

ed
by

al
lp

la
nn

er
s.

80 CHAPTER 7: EMPIRICAL EVALUATION

The performance of SSiPP, Labeled-SSiPP and LRTDP is similar for t > tmax in all the
problems since LRTDP is used as ε-OPTIMAL-SSP-SOLVER and tmax is such that Ss0,t con-
tains all the states necessary to find the optimal solution. The performance improvement of
Labeled-SSiPP over SSiPP is more evident for smaller values of t and as t approaches tmax it
decreases until both Labeled-SSiPP and SSiPP converge to the LRTDP performance.

For the square and y tracks, the best performance is obtained by Labeled-SSiPP for t ei-
ther 64 (small tracks) or 128 (large tracks), both values smaller than tmax for their respective
problems. While this improvement obtained by Labeled-SSiPP is in the intersection of the
95% confidence interval for the y tracks, it is statistically significant for the square tracks, es-
pecially for the large instance: 612.78±30.44 (Labeled-SSiPP) versus 702.42±12.82 (LRTDP).
This difference in performance is because the optimal policy in the square-large track reaches
only 0.75% of the state space (Table 7.5). Therefore both SSiPP and Labeled-SSiPP take ad-
vantage of the short-sighted search to prune useless states earlier in the search, resulting a better
performance than LRTDP for t ∈ {32, 64, 128, 256}.

7.3 International Probabilistic Planning Competition

In this section, we compare the performance of the following planners to obtain (sub-optimal)
solutions under a 20 minutes time cutoff:

• FF-Replan [Yoon et al., 2007] (winner of IPPC’04),

• Robust-FF [Teichteil-Koenigsbuch et al., 2008] (winner of IPPC’08),

• HMDPP [Keyder and Geffner, 2008],

• ReTrASE [Kolobov et al., 2009],

• SSiPP,

• Labeled-SSiPP, and

• SSiPP-FF.

The non-SSiPP planners are reviewed in Chapter 6 and, for these experiments, we use 15 prob-
lems from IPPC’08 of each domain described in Section 7.1. We present the methodology used
in this experiment in Section 7.3.1. In Section 7.3.2, we describe heuristics to choose the param-
eters of SSiPP, Labeled-SSiPP and SSiPP-FF, i.e., the value of t for depth-based short-sighted
SSPs. Section 7.3.3 presents the results of this experiment.

7.3 INTERNATIONAL PROBABILISTIC PLANNING COMPETITION 81

7.3.1 Methodology

We use a methodology similar to the IPPCs, in which there is a time cutoff for each individual
problem: a planner has 20 minutes to compute a policy and simulate the computed policy 50
times from the initial state s0. A round is each simulation from s0 of the same problem, and
rounds are simulated in a client/server approach using MDPSIM [Younes et al., 2005], an SSP
(and MDP) simulator. Planners send actions to be simulated to MDPSIM and MDPSIM inter-
nally simulates the received actions and returns the resulting state. Every round terminates when
either: (i) the goal is reached; (ii) an invalid action, e.g., not applicable in the current state, is sent
to MDPSIM; (iii) 2000 actions have been submitted to MDPSIM; or (iv) the planner explicitly
gives up from the round, e.g., because it inferred that it is trapped in a dead end. A round is
considered successful if the goal is reached, otherwise it is declared as a failed round. Notice
that planners are allowed to change their policies at any time, i.e., during a round or in between
rounds. Therefore, the knowledge obtained from one round, e.g., the lower bound on V ∗(s0),
can be used to solve subsequent rounds.

A run is the sequence of rounds simulated by a planner for a given problem and the previous
IPPCs evaluate planners based on a single run per problem. Due to the stochastic nature of SSPs,
the outcome of a single run depends on the random seed used in the initialization of both the
planner and MDPSIM. In order to evaluate planners more accurately, we execute 50 runs for
each problem and planner, and no information is shared between the different runs, i.e., all the
internal variables of the planners are reseted when a new run starts. Therefore, in this section,
the performance of a planner in a given problem is estimated by 2500 rounds generated by
potentially 50 different policies computed by the same planner. Notice that our approach (50
runs of 50 rounds each) is not equivalent to the execution of one run of 2500 rounds. In the
latter case, a planner might be guided towards bad decisions by the outcomes of the probabilistic
actions and not have enough time to revise such decisions. Alternatively, by simulating several
runs, there is small probability that this guidance will happen in all the runs.

In order to respect the 20 minutes time cutoff, SSiPP, Labeled-SSiPP and SSiPP-FF solve

rounds internally for 15 minutes and then start solving rounds through MDPSIM. For SSiPP
and SSiPP-FF, a round is solved internally by calling Algorithms 3.2 and 5.5, respectively, and
the obtained lower bound V in round r is used as heuristic for round r + 1. The same effect is
obtained for Labeled-SSiPP by adding a 15 minutes time cutoff in Line 5 of Algorithm 5.2.

The IPPCs also enforce that planner must not have free parameters, i.e., the only input for
each planner is the problem to be solved. Therefore, all parameters of a planner, e.g., the value
of t and heuristic for SSiPP, must be fixed a priori or automatically derived. Because of this
rule, all the non-SSiPP planners considered do not have parameters. In the IPPC’08, two differ-

82 CHAPTER 7: EMPIRICAL EVALUATION

ent parametrization were fixed for Robust-FF and we consider only the RFF-PG parametrization,
since it obtained the best performance in IPPC’08 for the considered problems [Bryce and Buffet,
2008]. Section 7.3.2 describes the two different methods we employed to obtain the parametriza-
tions for SSiPP, Labeled-SSiPP and SSiPP-FF.

7.3.2 Choosing the value of t and heuristic for SSiPP-based planners

In order to choose a fixed parametrization for SSiPP, Labeled-SSiPP and SSiPP-FF, i.e., a value
of t and a heuristic, we perform a round-robin tournament between different parametrizations
of each planner. The round-robin tournament consists in comparing the performance of dif-
ferent parametrizations of a planner in the 15 final problems from IPPC’06 for blocks world,
zeno travel, and exploding blocks world. While these three domains are the same between
IPPC’06 and IPPC’08, their final problems are different. No problem from the triangle tire
world is used for training, since they are deterministically generated, i.e., any triangle tire world
of size {1, . . . , 15} would be exactly the same as the problems in the main experiment. We refer
to these 45 problems as the set of training problems J.

Formally, given a planner X and a set of parametrizations K = {k1, . . . , kn} for X , we
solve all problems in J using the same methodology as described in Section 7.3.1. We denote as
c(ki, p) the number of rounds of the problem p ∈ J in which X , using parametrization ki ∈ K,
reached the goal. The function m(ki, kj) represents the tournament bracket between ki and kj ,
and m(ki, kj) equals 1 if∣∣∣{p ∈ P|c(ki, p) > c(kj, p)}

∣∣∣ > ∣∣∣{p ∈ P|c(ki, p) < c(kj, p)}
∣∣∣,

i.e., if ki outperforms kj in most of the problems, and 0 otherwise. The tournament winner
is the parametrization k that outperforms the majority of other parametrizations in K, that is,
k = argmaxki∈K

∑
kj 6=ki m(ki, kj).

For SSiPP and Labeled-SSiPP, the set of considered parametrizations K is the cross product
of T = {2, 3, 4, . . . , 10} and the following set H of heuristics:

• zero-heuristic: h0(s) = 0 for all s ∈ S;

• FF-heuristic: hff(s) equals the cost of the plan returned by the deterministic planner FF
[Hoffmann and Nebel, 2001] to reach a goal state from the current state s in the all-
outcomes determinization; and

• hmax and hadd applied to the all-outcomes determinization of the original problem [Teichteil-
Königsbuch et al., 2011].

7.3 INTERNATIONAL PROBABILISTIC PLANNING COMPETITION 83

For SSiPP-FF, the determinization type is also a parameter and its set of considered parametriza-
tions K equals T × H × {most-likely outcome, all-outcomes}. The parametrization that won
the round-robin tournament for each SSiPP-based planner in their respective set of considered
parameters K is: t = 3 and hadd for SSiPP; t = 6 and hadd for Labeled-SSiPP; and t = 3, hadd and
the all-outcomes determinization for SSiPP-FF. We refer to these parametrizations as SSiPPt,
Labeled-SSiPPt and SSiPP-FFt.

We also consider an approach in which the value of t is randomly selected for SSiPP, Labeled-
SSiPP and SSiPP-FF. Formally, we select t at random from {2, 3, 4, . . . , 10} before calling
GENERATE-SHORT-SIGHTED-SSP in Algorithms 3.2, 5.2 and 5.5. Therefore, different values
of t might be used for solving a given problem. For this approach, we use hadd as heuristic for all
the SSiPP-based planners and the all-outcomes determinization for SSiPP-FF. Also, in order to
avoid generating large short-sighted SSPs, we stop GENERATE-SHORT-SIGHTED-SSP after 15
seconds or if |Ss,t| > 105. When GENERATE-SHORT-SIGHTED-SSP is interrupted, the states
that could not be explored are marked as artificial goals. We refer to these parametrizations as
SSiPPr, Labeled-SSiPPr and SSiPP-FFr.

7.3.3 Results

This experiment was conducted on a 2.4GHz machine with 16 cores running a 64-bit version of
Linux. We use coverage, i.e., the ratio between the number of successful rounds and 2500 (the
total number of round), as performance metric. Table 7.7 presents the summary of the results as
the number of problems in which a given planner has the best coverage. The detailed results are
presented in Tables 7.8 and 7.9 as the coverage obtained by each planner in every problem, and
in Tables 7.10 and 7.11 as the average and 95% confidence interval for the obtained cost over the
successful rounds for each problem.

SSiPP-FFt and SSiPP-FFr successfully take advantage of determinizations and improved
the coverage obtained by SSiPP and Labeled-SSiPP in the domains without dead ends, i.e.,
blocks world and zeno travel. In particular, both parametrizations of SSiPP-FF, together with
FF-Replan, are the only planners able to solve the medium and large problems of the zeno travel
domain. SSiPP-FF also improves the performance of FF-Replan for problems with dead ends. In
the triangle tire world, a problem designed to penalize determinization approaches, FF-Replan,
SSiPP-FFt and SSiPP-FFr solve instances up to number 5, 7 and 9, respectively; moreover, the
coverage of SSiPP-FFr is more than the double of the coverage of FF-Replan for problems 1 to 5.

84 CHAPTER 7: EMPIRICAL EVALUATION

Blocks Zeno Triangle Exploding
World Travel Tire W. Blocks W.

FF-Replan 13 15 0 1
Robust-FF 8 0 4 1
HMDPP 4 2 13 1
ReTrASE 8 n.a. 4 1
SSiPPt 4 0 1 2
SSiPPr 4 2 2 8
L-SSiPPt 5 2 2 2
L-SSiPPr 5 2 2 3
SSiPP-FFt 8 11 0 2
SSiPP-FFr 8 13 0 7

Table 7.7: Summary of the IPPC experiment. Each cell represents the number of problems per
domain in which a given planner has the best coverage. For each problem, more than one planner
might obtain the best coverage, therefore the columns do not add up to 15. ReTrASE does not
support the zeno travel problems (n.a.).

In the exploding blocks world, the combination of SSiPP and determinizations is especially
useful for large instances: SSiPP-FFr is the planner with the best coverage for the 5 largest
problems in this domain. The solution quality of FF-Replan is also improved by SSiPP-FF. For
instance, in zeno travel problems 1 to 10 and 12, i.e., all the problems in which the SSiPP-FF
obtained coverage 1, the solutions found by SSiPP-FFr and SSiPP-FFt have average cost between
0.80 and 0.92 of the FF-Replan solutions average costs.

Labeled-SSiPP performs well in the small problems, obtaining good coverage and solutions
with small average cost; however Labeled-SSiPP fails to scale up to large problems. The reason
for not scaling up is the bias for exploration over exploitation employed by Labeled-SSiPP in
order to speedup the convergence to the ε-optimal solution.

All SSiPP-based planners perform well in the exploding blocks world: SSiPPt has the best
coverage in 9 of the problems; SSiPP-FFr has the best coverage in the 5 largest problems; and,
for all the considered problems in the exploding blocks world, a SSiPP-based planner has the
best coverage.

The performance in the triangle tire world problems is dominated by HMDPP. In this domain,
the chosen parametrizations of SSiPP, Labeled-SSiPP, and SSiPP-FF do not perform as well as
HMDPP or ReTrASE because their parametrizations use hadd as heuristic. hadd in the triangle tire
world guides the planners towards dead ends and the SSiPP-based planners manage to avoid only
the dead ends visible inside the short-sighted SSPs. As shown in Section 4.1.2, SSiPP performs
the best in the triangle tire domain when the zero-heuristic is used and Table 7.12 shows the

7.3 INTERNATIONAL PROBABILISTIC PLANNING COMPETITION 85

Pr
ob

.
FF

R
ep

la
n

R
FF

H
M

D
PP

R
eT

rA
SE

SS
iP

P t
SS

iP
P r

L
-S

Si
PP

t
L

-S
Si

PP
r

SS
iP

P-
FF

t
SS

iP
P-

FF
r

BlocksWorld

1
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
2

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

3
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
4

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

5
1.

00
0

0.
99

2
-

1.
00

0
0.

95
7

0.
64

9
1.

00
0

1.
00

0
1.

00
0

1.
00

0
6

1.
00

0
1.

00
0

-
1.

00
0

0.
96

4
0.

28
6

0.
34

2
0.

29
5

1.
00

0
1.

00
0

7
1.

00
0

0.
98

4
-

1.
00

0
0.

05
9

0.
07

4
0.

11
7

0.
09

9
1.

00
0

1.
00

0
8

1.
00

0
1.

00
0

-
1.

00
0

0.
13

2
0.

20
4

0.
17

3
0.

12
7

1.
00

0
1.

00
0

9
0.

99
9

0.
98

7
-

0.
87

0
0.

44
3

0.
18

6
0.

06
1

0.
04

0
0.

76
1

0.
50

7
10

0.
99

9
1.

00
0

-
0.

88
3

0.
00

2
-

0.
00

3
0.

00
1

0.
76

1
0.

53
3

11
0.

99
8

0.
99

5
-

0.
88

1
-

-
-

-
0.

76
4

0.
47

5
12

0.
99

8
1.

00
0

-
0.

92
5

0.
00

3
0.

00
6

-
-

0.
82

1
0.

51
9

13
0.

84
7

-
-

-
-

-
-

-
0.

06
7

0.
00

8
14

0.
86

7
-

-
-

-
-

-
-

0.
08

9
0.

01
0

15
0.

88
6

-
-

-
-

-
-

-
0.

06
2

0.
00

7

ZenoTravel

1
1.

00
0

0.
17

5
1.

00
0

n.
a.

0.
01

7
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

2
1.

00
0

0.
08

1
1.

00
0

n.
a.

0.
10

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

3
1.

00
0

-
-

n.
a.

-
-

-
-

1.
00

0
1.

00
0

4
1.

00
0

-
-

n.
a.

-
-

-
-

1.
00

0
1.

00
0

5
1.

00
0

-
-

n.
a.

-
-

-
-

1.
00

0
1.

00
0

6
1.

00
0

-
-

n.
a.

-
-

-
-

1.
00

0
1.

00
0

7
1.

00
0

-
-

n.
a.

-
-

-
-

1.
00

0
1.

00
0

8
1.

00
0

-
-

n.
a.

-
-

-
-

1.
00

0
1.

00
0

9
1.

00
0

-
-

n.
a.

-
-

-
-

1.
00

0
1.

00
0

10
1.

00
0

-
-

n.
a.

-
-

-
-

1.
00

0
1.

00
0

11
1.

00
0

-
-

n.
a.

-
-

-
-

0.
26

1
0.

46
9

12
1.

00
0

-
-

n.
a.

-
-

-
-

1.
00

0
1.

00
0

13
1.

00
0

-
-

n.
a.

-
-

-
-

0.
44

3
1.

00
0

14
1.

00
0

-
-

n.
a.

-
-

-
-

0.
26

9
1.

00
0

15
1.

00
0

-
-

n.
a.

-
-

-
-

-
0.

74
0

Ta
bl

e
7.

8:
C

ov
er

ag
e

fo
rt

he
bl

oc
ks

w
or

ld
an

d
ze

no
tr

av
el

do
m

ai
ns

in
th

e
IP

PC
ex

pe
ri

m
en

t.
B

es
tc

ov
er

ag
e

fo
re

ac
h

pr
ob

le
m

(r
ow

)i
s

sh
ow

n
in

bo
ld

.I
fn

o
ro

un
d

is
so

lv
ed

,i
.e

.,
ze

ro
co

ve
ra

ge
,t

he
n

’-
’i

s
sh

ow
n.

R
eT

rA
SE

do
es

no
ts

up
po

rt
th

e
ze

no
tr

av
el

pr
ob

le
m

s
(n

.a
.).

86 CHAPTER 7: EMPIRICAL EVALUATION

Prob.
FFR

eplan
R

FF
H

M
D

PP
R

eTrA
SE

SSiPP
t

SSiPP
r

L
-SSiPP

t
L

-SSiPP
r

SSiPP-FF
t

SSiPP-FF
r

Triangle Tire World

1
0.480

1.000
1.000

1.000
1.000

1.000
1.000

1.000
0.747

0.969
2

0.122
1.000

1.000
1.000

0.857
1.000

1.000
1.000

0.120
0.774

3
0.036

1.000
1.000

0.975
0.564

0.653
0.815

0.817
0.036

0.322
4

0.010
1.000

1.000
0.964

0.280
0.287

0.661
0.659

0.011
0.141

5
0.001

0.936
1.000

0.895
0.159

0.114
0.479

0.525
0.001

0.063
6

-
0.857

1.000
0.901

0.127
0.084

0.146
0.101

0.001
0.019

7
-

0.319
1.000

0.866
0.116

0.073
0.033

0.029
0.001

0.001
8

-
0.129

1.000
0.880

0.062
0.046

0.021
0.022

-
0.002

9
-

0.058
1.000

0.800
0.023

0.025
0.012

0.014
-

0.001
10

-
0.054

1.000
0.731

0.011
0.013

0.005
0.004

-
-

11
-

0.015
1.000

0.775
0.006

0.003
0.001

-
-

-
12

-
0.003

1.000
0.510

0.003
0.004

-
-

-
-

13
-

0.010
0.663

0.348
0.001

0.001
-

-
-

-
14

-
0.004

-
0.367

0.001
0.001

-
-

-
-

15
-

0.009
-

0.260
-

-
-

-
-

-

Exploding Blocks World

1
0.358

0.580
0.599

0.904
0.907

0.893
0.901

0.909
0.896

0.891
2

0.218
0.217

0.358
0.359

0.378
0.383

0.351
0.376

0.220
0.283

3
0.359

0.363
0.365

0.388
-

0.467
0.401

0.412
0.347

0.346
4

0.534
0.533

0.363
0.402

0.534
0.562

0.484
0.481

0.341
0.328

5
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
6

0.898
0.904

0.173
0.532

0.920
0.940

0.918
0.911

0.898
0.926

7
0.996

0.608
-

1.000
1.000

1.000
1.000

1.000
1.000

1.000
8

0.131
0.133

0.001
0.223

0.453
0.455

0.412
0.373

0.199
0.195

9
0.073

0.101
-

0.194
0.797

0.827
0.795

0.816
0.129

0.159
10

0.008
0.007

-
0.039

0.116
0.189

0.012
-

0.012
0.020

11
0.079

0.059
-

0.018
-

-
-

-
0.044

0.086
12

0.008
0.014

-
-

-
-

-
-

0.008
0.021

13
0.110

0.121
-

0.059
0.182

0.079
0.007

0.006
0.038

0.205
14

0.026
0.026

-
-

-
-

-
-

0.029
0.047

15
0.129

0.058
-

0.007
-

-
-

-
0.076

0.201

Table
7.9:

C
overage

forthe
triangle

tire
w

orld
and

exploding
blocks

w
orld

dom
ains

in
the

IPPC
experim

ent.B
estcoverage

foreach
problem

(row
)is

show
n

in
bold.Ifno

round
is

solved,i.e.,zero
coverage,then

’-’is
show

n.

7.3 INTERNATIONAL PROBABILISTIC PLANNING COMPETITION 87

Pr
ob

le
m

FF
-R

ep
la

n
R

FF
H

M
D

PP
R

eT
rA

SE
SS

iP
P t

SS
iP

P r
L

-S
Si

PP
t

L
-S

Si
PP

r
SS

iP
P-

FF
t

SS
iP

P-
FF

r

BlocksWorld

1
21
.5
±

0.
2

21
.8
±

0.
1

17
.0
±

0.
1

17
.0
±

0.
1

17
.0
±

0.
1

17
.0
±

0.
2

16
.9
±

0.
1

16
.8
±

0.
2

31
.8
±

4.
0

17
.1
±

0.
2

2
11
.6
±

0.
1

11
.8
±

0.
1

9.
1
±

0.
1

9.
1
±

0.
1

9.
1
±

0.
1

9.
0
±

0.
2

9.
1
±

0.
1

9.
3
±

0.
2

21
.6
±

1.
5

9.
2
±

0.
1

3
18
.7
±

0.
2

20
.4
±

0.
2

15
.6
±

0.
2

16
.4
±

0.
2

15
.6
±

0.
2

15
.6
±

0.
3

15
.6
±

0.
2

15
.8
±

0.
3

30
.6
±

2.
6

16
.0
±

0.
3

4
16
.1
±

0.
2

15
.5
±

0.
1

11
.1
±

0.
1

11
.1
±

0.
1

11
.1
±

0.
1

11
.1
±

0.
1

11
.1
±

0.
1

11
.1
±

0.
2

33
.9
±

1.
9

11
.2
±

0.
1

5
87
.3
±

0.
9

48
.5
±

0.
2

-
50
.8
±

0.
6

35
.5
±

0.
3

38
.4
±

0.
9

35
.9
±

0.
3

36
.8
±

0.
6

81
.1
±

2.
8

51
.1
±

1.
7

6
29
.1
±

0.
2

27
.0
±

0.
1

-
19
.2
±

0.
1

18
.5
±

0.
1

23
.1
±

0.
7

25
.2
±

0.
5

24
.8
±

0.
9

27
.6
±

0.
5

26
.6
±

0.
7

7
45
.0
±

0.
4

40
.4
±

0.
3

-
31
.9
±

0.
3

38
.5
±

1.
8

56
.5
±

7.
6

46
.6
±

2.
7

48
.6
±

4.
1

51
.2
±

1.
3

48
.1
±

1.
7

8
72
.9
±

0.
6

68
.5
±

0.
3

-
45
.8
±

0.
3

57
.4
±

1.
5

61
.0
±

2.
6

64
.2
±

2.
7

71
.0
±

6.
4

62
.8
±

1.
1

71
.3
±

2.
2

9
32

7.
3
±

36
.3

38
.4
±

0.
2

-
53
.7
±

1.
1

46
.4
±

0.
5

44
.6
±

1.
1

44
.2
±

1.
3

52
.2
±

3.
5

25
6.

1
±

13
.3

16
5.

0
±

29
.8

10
85
.1
±

7.
5

21
.4
±

0.
1

-
23
.3
±

0.
2

21
.8
±

1.
9

-
23
.1
±

2.
3

25
.0
±
∞

76
.6
±

2.
7

48
.8
±

6.
2

11
14

7.
0
±

14
.1

31
.9
±

0.
3

-
37
.1
±

0.
4

-
-

-
-

14
1.

5
±

4.
6

10
2.

9
±

16
.8

12
23

5.
7
±

21
.2

53
.8
±

0.
3

-
56
.2
±

0.
6

59
.5
±

13
.7

78
.0
±

7.
6

-
-

15
3.

6
±

4.
9

12
5.

2
±

21
.8

13
17

44
.7
±

92
.0

-
-

-
-

-
-

-
42

3.
3
±

46
.4

16
4.

2
±

22
.6

14
43

5.
0
±

21
.7

-
-

-
-

-
-

-
10

4.
1
±

7.
6

60
.5
±

11
.4

15
11

25
.4
±

55
.5

-
-

-
-

-
-

-
28

8.
8
±

24
.5

14
7.

9
±

27
.7

ZenoTravel

1
79

2.
1
±

22
.8

46
42
.6
±

31
1.

8
50

5.
4
±

13
.7

n.
a.

49
8.

6
±

96
.5

52
1.

0
±

30
.3

50
3.

4
±

11
.6

50
7.

1
±

24
.2

64
2.

2
±

15
.8

70
0.

4
±

30
.7

2
86

5.
2
±

21
.4

35
56
.9
±

18
7.

2
49

0.
2
±

13
.2

n.
a.

49
6.

1
±

41
.6

61
4.

5
±

39
.2

49
4.

1
±

11
.3

49
6.

2
±

23
.3

74
8.

9
±

17
.1

75
1.

9
±

30
.5

3
16

15
.1
±

32
.6

-
-

n.
a.

-
-

-
-

14
27
.0
±

24
.5

14
90
.2
±

47
.7

4
10

72
.3
±

24
.8

-
-

n.
a.

-
-

-
-

97
6.

7
±

19
.1

99
1.

1
±

36
.6

5
17

96
.5
±

31
.7

-
-

n.
a.

-
-

-
-

14
46
.6
±

25
.1

14
38
.0
±

44
.9

6
34

49
.8
±

48
.5

-
-

n.
a.

-
-

-
-

29
46
.7
±

34
.4

29
84
.2
±

60
.7

7
21

32
.0
±

35
.7

-
-

n.
a.

-
-

-
-

18
22
.6
±

26
.0

19
56
.3
±

50
.3

8
19

73
.0
±

35
.1

-
-

n.
a.

-
-

-
-

17
97
.6
±

27
.2

16
09
.4
±

50
.1

9
32

82
.0
±

48
.7

-
-

n.
a.

-
-

-
-

28
27
.6
±

38
.6

26
26
.7
±

57
.8

10
17

61
.6
±

34
.6

-
-

n.
a.

-
-

-
-

14
52
.9
±

23
.4

14
58
.5
±

44
.8

11
33

91
.7
±

48
.7

-
-

n.
a.

-
-

-
-

44
90
.4
±

88
.4

45
27
.3
±

88
.3

12
22

83
.9
±

36
.0

-
-

n.
a.

-
-

-
-

19
77
.9
±

28
.4

20
37
.3
±

64
.3

13
41

59
.6
±

55
.6

-
-

n.
a.

-
-

-
-

44
96
.0
±

68
.9

34
41
.4
±

70
.9

14
39

97
.1
±

50
.5

-
-

n.
a.

-
-

-
-

37
28
.2
±

75
.3

32
43
.7
±

67
.3

15
43

50
.2
±

55
.0

-
-

n.
a.

-
-

-
-

-
50

49
.6
±

98
.0

Ta
bl

e
7.

10
:C

os
to

ft
he

so
lu

tio
ns

fo
rt

he
bl

oc
k

w
or

ld
an

d
ze

no
tr

av
el

do
m

ai
ns

in
th

e
IP

PC
ex

pe
ri

m
en

t.
E

ac
h

ce
ll

re
pr

es
en

ts
th

e
av

er
ag

e
an

d
95

%
co

nfi
de

nc
e

in
te

rv
al

fo
rt

he
ob

ta
in

ed
co

st
ov

er
th

e
su

cc
es

sf
ul

ro
un

ds
.I

fn
o

ro
un

d
is

so
lv

ed
,t

he
n

’-
’i

s
sh

ow
n;

if
ex

ac
tly

on
e

ro
un

d
is

so
lv

ed
,t

he
n
∞

is
sh

ow
n

in
th

e
95

%
co

nfi
de

nc
e

in
te

rv
al

.R
eT

rA
SE

do
es

no
ts

up
po

rt
th

e
ze

no
tr

av
el

pr
ob

le
m

s
(n

.a
.).

88 CHAPTER 7: EMPIRICAL EVALUATION

Problem
FF-R

eplan
R

FF
H

M
D

PP
R

eTrA
SE

SSiPP
t

SSiPP
r

L
-SSiPP

t
L

-SSiPP
r

SSiPP-FF
t

SSiPP-FF
r

Triangle Tire World

1
2.0
±

0.0
6.3
±

0.1
6.2
±

0.1
6.7
±

0.1
6.8
±

0.1
6.7
±

0.2
6.8
±

0.1
6.8
±

0.2
4.7
±

0.0
6.0
±

0.1
2

4.0
±

0.0
11.8
±

0.1
11.8
±

0.1
13.8
±

0.1
12.5
±

0.1
12.8
±

0.2
12.9
±

0.1
13.1
±

0.2
7.0
±

0.0
11.2
±

0.2
3

6.0
±

0.0
19.2
±

0.1
19.3
±

0.1
21.7
±

0.2
20.8
±

0.2
20.2
±

0.3
20.4
±

0.1
20.7
±

0.3
9.0
±

0.0
18.1
±

0.5
4

8.0
±

0.0
27.0
±

0.1
27.1
±

0.1
28.6
±

0.2
29.8
±

0.3
29.7
±

0.5
28.2
±

0.2
28.2
±

0.3
11.0
±

0.0
23.4
±

0.7
5

10.0
±

0.0
35.0
±

0.1
35.2
±

0.2
37.5
±

0.2
39.8
±

0.4
38.6
±

0.8
36.1
±

0.2
36.1
±

0.4
13.0
±

0.0
27.6
±

1.3
6

-
45.4
±

0.3
42.9
±

0.2
45.3
±

0.2
50.4
±

0.4
48.7
±

1.0
45.7
±

0.4
45.5
±

1.0
15.0
±

0.0
28.8
±

2.5
7

-
53.6
±

0.4
50.8
±

0.2
54.1
±

0.2
60.7
±

0.5
60.1
±

1.1
57.3
±

0.8
58.5
±

1.6
17.0
±
∞

24.0
±
∞

8
-

63.8
±

0.6
59.2
±

0.2
61.9
±

0.3
75.4
±

0.8
68.8
±

2.0
70.2
±

1.0
70.4
±

1.9
-

42.0
±

11.8
9

-
72.7
±

0.9
66.9
±

0.2
69.4
±

0.3
89.2
±

1.3
80.7
±

2.3
82.6
±

1.4
84.2
±

3.1
-

32.0
±
∞

10
-

83.7
±

1.0
75.0
±

0.2
78.0
±

0.3
103.5

±
1.4

94.1
±

1.9
92.9
±

2.0
92.7
±

3.6
-

-
11

-
93.4
±

1.9
82.9
±

0.2
86.0
±

0.3
117.3

±
2.1

108.7
±

3.6
102.5

±
1.0

-
-

-
12

-
103.9

±
2.9

91.2
±

0.3
93.8
±

0.4
128.9

±
2.9

125.3
±

0.7
-

-
-

-
13

-
113.6

±
2.6

99.1
±

0.3
101.9

±
0.5

137.8
±

5.7
128.0

±
∞

-
-

-
-

14
-

121.5
±

5.2
-

110.0
±

0.5
155.0

±
1.1

157.0
±

1.1
-

-
-

-
15

-
131.2

±
3.9

-
117.8

±
0.6

-
-

-
-

-
-

Exploding Blocks World

1
8.0
±

0.0
8.0
±

0.0
10.2
±

0.0
10.0
±

0.0
10.0
±

0.0
10.0
±

0.0
10.0
±

0.0
10.0
±

0.0
10.0
±

0.0
10.0
±

0.0
2

12.9
±

0.1
12.0
±

0.0
12.0
±

0.0
12.0
±

0.0
12.0
±

0.0
12.0
±

0.0
12.0
±

0.0
12.0
±

0.0
12.0
±

0.0
15.5
±

0.2
3

10.0
±

0.0
10.0
±

0.0
10.0
±

0.0
28.5
±

0.9
-

30.6
±

2.3
30.4
±

1.1
30.2
±

1.7
12.0
±

0.0
21.0
±

1.5
4

15.4
±

0.1
15.4
±

0.1
14.0
±

0.0
14.6
±

0.1
15.3
±

0.1
15.4
±

0.2
15.4
±

0.1
15.5
±

0.2
15.4
±

0.1
15.4
±

0.2
5

6.8
±

0.0
6.0
±

0.0
6.0
±

0.0
6.0
±

0.0
6.0
±

0.0
6.0
±

0.0
6.0
±

0.0
6.0
±

0.0
6.2
±

0.0
6.0
±

0.0
6

13.9
±

0.1
14.0
±

0.1
14.7
±

0.1
13.2
±

0.1
13.4
±

0.1
13.5
±

0.1
13.4
±

0.1
13.3
±

0.1
14.9
±

0.1
13.8
±

0.1
7

15.8
±

0.0
12.0
±

0.0
-

12.6
±

0.0
12.0
±

0.0
12.4
±

0.1
12.0
±

0.0
12.2
±

0.0
13.2
±

0.0
14.0
±

0.2
8

27.2
±

0.4
24.0
±

0.0
34.0
±

0.0
48.0
±

1.7
28.1
±

0.0
28.1
±

0.1
28.7
±

0.1
39.0
±

0.6
32.9
±

0.5
40.5
±

3.4
9

26.0
±

0.0
27.5
±

0.3
-

64.0
±

2.4
44.1
±

0.8
44.8
±

1.4
43.7
±

0.7
44.4
±

1.4
50.1
±

2.0
48.4
±

2.7
10

35.0
±

0.5
36.0
±

0.0
-

78.1
±

6.3
62.5
±

3.9
60.8
±

1.9
63.9
±

6.2
-

34.8
±

0.3
42.8
±

4.9
11

30.0
±

0.0
32.1
±

0.1
-

57.6
±

5.4
-

-
-

-
47.5
±

1.8
44.5
±

1.9
12

38.8
±

0.4
38.0
±

0.0
-

-
-

-
-

-
44.3
±

1.8
44.0
±

1.0
13

44.6
±

0.7
47.3
±

0.6
-

77.6
±

3.9
53.3
±

1.3
44.8
±

1.5
46.7
±

1.6
54.0
±

7.5
81.4
±

4.2
100.4

±
8.5

14
37.0
±

0.3
51.0
±

0.9
-

-
-

-
-

-
40.9
±

0.6
67.2
±

6.2
15

42.7
±

0.4
40.9
±

0.6
-

113.0
±

16.3
-

-
-

-
53.8
±

1.5
70.8
±

3.9

Table
7.11:C

ostofthe
solutions

forthe
triangle

tire
w

orld
and

exploding
blocks

dom
ain

in
the

IPPC
experim

ent.E
ach

cellrepresents
the

average
and

95%
confidence

intervalforthe
obtained

costoverthe
successfulrounds.

Ifno
round

is
solved,then

’-’is
show

n;if
exactly

one
round

is
solved,then

∞
is

show
n

in
the

95%
confidence

interval.

7.4 SUMMARY 89

Problem SSiPP L-SSiPP SSiPP-FF

Tr
ia

ng
le

Ti
re

W
or

ld

1 1.000 1.000 1.000
2 1.000 1.000 1.000
3 0.997 1.000 0.533
4 0.977 1.000 0.162
5 0.963 1.000 0.082
6 0.950 1.000 0.049
7 0.913 1.000 0.023
8 0.870 0.868 0.015
9 0.882 0.798 0.003

10 0.842 0.767 -
11 0.773 0.717 -
12 0.738 0.633 -
13 0.717 0.595 -
14 0.685 0.518 -
15 0.617 0.422 -

Table 7.12: Coverage of SSiPP-based planner in the triangle tire world using depth-based short-
sighted SSPs and the zero-heuristic. For all planners, the parameter t equals 8 for all the planners
and, for SSiPP-FF, the all-outcomes determinization is used. Best coverage for each problem
(row), with respect to the results in Tables 7.8 and 7.9, are shown in bold. If no round is solved,
then ’-’ is shown.

performance of SSiPP, Labeled-SSiPP, and SSiPP-FF using the parametrization t = 8 and the
zero-heuristic (for SSiPP-FF, the all-outcomes determinization is used). For these parametriza-
tions, the coverage obtained by SSiPP, Labeled-SSiPP, and SSiPP-FF is significantly improved:
Labeled-SSiPP solved all the rounds for the problems 1 to 7; and SSiPP has the best coverage
for the 3 largest problems in comparison with all the considered planners.

7.4 Summary

In this chapter, we presented a rich empirical comparison between the proposed algorithms and
other state-of-the-art algorithms in two tasks: finding an ε-optimal solution and finding a (sub-
optimal) solution under the International Probabilistic Planning Competition (IPPC) rules, e.g.,
small time cutoff. The results from the ε-convergence experiments showed that Labeled-SSiPP,
using LRTDP as underlying SSP solver, outperforms SSiPP, LRTDP and FTVI on problems from
the IPPC and on control problems with low ratio of relevant states, i.e., |Sπ∗|/|S|. The results
obtained in the experiment following the IPPC rules show that SSiPP-FF successfully combines
the behavior of SSiPP and FF-Replan by having a large coverage in problems without dead ends

90 CHAPTER 7: EMPIRICAL EVALUATION

and significantly improving the coverage of FF-Replan in problems with dead ends. These re-
sults also show that SSiPP and SSiPP-FF consistently outperforms the other planners in all the
problems of the exploding blocks world, a probabilistic interesting domain.

Chapter 8

A Real World Application: a Service Robot
Searching for Objects

In this chapter, we present how a mobile service robot moving in a building in order to find an
object, whose location is not deterministically known, can use short-sighted planning to improve
its performance. We begin by motivating the mobile service problem and, in Section 8.2, we
formally present how to represent this problem as an SSP. In Section 8.3, we empirically evaluate
different planners, including SSiPP, in different instances of the mobile service robot problem.

8.1 Motivation

The problem of an autonomous agent moving in an environment to find objects while minimizing
the search cost is ubiquitous in the real world, e.g., a taxi driver looking for passengers and min-
imizing the usage of gas, a software agent finding information about a product on the web while
minimizing the bandwidth usage, a service robot bringing objects to users minimizing distance
traversed, and a robot collecting rocks for experiments while minimizing power consumption. In
all these problems, we assume that the agent does not know where the exact objects are, and has
some probabilistic model of the location of the objects.

For this chapter, our concrete motivation is the mobile service robot that moves in a building
to find an object, e.g., coffee, and to deliver it to a location, e.g., office #171. We assume that
the robot is given a map of the environment and that the object can be in more than one location.
Also, we consider that the probability of the object being at a location type, e.g., offices, is given.
Such prior distribution can be designed by an expert or automatically obtained, for example by
querying the web (e.g., [Samadi et al., 2012]). In particular, we focus on the problem of finding
the desired object, since the delivery problem can be cast as the problem of finding an object that

91

92 CHAPTER 8: A REAL WORLD APPLICATION: A SERVICE ROBOT SEARCHING FOR OBJECTS

is deterministically present only in the delivery location. In the next section, we present how to
represent the problem of finding a given object as an SSP.

8.2 Representing the Problem as an SSP

In this section we present our formulation of the problem of finding an object in a building as an
SSP represented in PPDDL (Section 2.2). For this representation, we use one domain variable,
LOCATION, that describes the locations the agent is allowed to visit and the following predicates
defined over locations:

• connected(l1, l2): true when the agent can move from location l1 to l2;

• at(l): to represent the agent’s current location;

• objAt(l): to denote that an instance of the object being searched for is at l;

• searched(l): to indicate that l has already being searched;

• and a set of predicates to denote the type of each location, e.g., isOffice(l) for office
locations and isKitchen(l) for kitchens.

Also, we use the state variable hasObject to indicate that the agent has the desired object.

For each location type t, we use the binary random variable Xt to denote if the object is
at the locations of type t and we assume that a prior probability P̄ (Xt) is given. Note that∑

t P̄ (Xt = true) is not required to sum up to 1. This feature is used for representing scenarios
such as an object that can be found deterministically in more than one location type or an object
that has a low probability to be found in any location type. To simplify notation, we denote
P̄ (Xt = true) as pt for every location type t.

We model the object finding through a pair of action schemas, Search and PickUp. The
action Search(l), depicted in Figure 8.1, has the precondition that the agent is at location l and
l has not been searched before. Its effect is searched(l), i.e., to mark l as searched, and, with
probability pt, where t is the location type of l, the object is found. With probability 1 − pt,
the object is not found at l. Since searched(l) is true after the execution of Search(l), the
agent cannot search the same location l more than once. We enforce this restriction because
(1 − pt)k → 0 as k → ∞ for pt > 0, i.e., if the agent were allowed to search the same location
enough times it would always find the object there.

The action PickUp(l), depicted in Figure 8.2, represents the agent obtaining the object at
location l if the object is there. This action can be easily extended to encompass more general
scenarios, e.g., a robotic agent with grippers that can fail and the object might not be always

8.2 REPRESENTING THE PROBLEM AS AN SSP 93

(:action Search
:parameters (?l - location)
:precondition (and (at ?l) (not (searched ?l)))
:effect (and

(searched ?l)
(when (isBathroom ?l) (prob 0.08 (objAt ?l)))
(when (isKitchen ?l) (prob 0.18 (objAt ?l)))
(when (isOffice ?l) (prob 0.02 (objAt ?l)))
(when (isPrinterR ?l) (prob 0.72 (objAt ?l))))

)

Figure 8.1: PPDDL code for the action Search(l) of the service robot problem. For this action
the prior used for the object being at a location l is 8%, 18%, 2% and 72% if l is, respectively, a
bathroom, a kitchen, an office or a printer room.

(:action PickUp
:parameters (?l - location)
:precondition (and (at ?l) (objAt ?l))
:effect (and

(not (objAt ?loc))
(hasObject))

)

Figure 8.2: PPDDL code for the action PickUp(l) of the service robot problem..

obtained or a symbiotic autonomous agent that might ask people for help to manipulate the
object [Rosenthal et al., 2010]. Such extensions can be modeled by converting PickUp(l) into a
probabilistic action or a chain of probabilistic actions.

We use the action schema Move to model the agent moving in the map represented by the
predicate connected(l1, l2). The action Move(l1, l2) is probabilistic and with probability p the
agent moves from l1 to l2 and with probability 1 − p the agent stays at l1. For all the examples
and experiments in this chapter, we use p = 0.9.

Initially, the value of the state variable hasObject is false and the goal of the agent is to reach
any state in which hasObject is true. For easy of presentation, we define the cost of all actions
to be 1, i.e., C(s, a, s′) = 1 ∀s ∈ S, a ∈ A, s′ ∈ S. Therefore the average cost of reaching the
goal equals the average number of actions applied by the agent.

To illustrate our model, consider the map presented in Figure 8.3(a). In this map, the agent
is at position 0 and there are two hallways that can be explored: (i) the right hallway of size
k in which the last location is a kitchen; and (ii) the left hallway with 2r offices. Notice that
Figure 8.3(a) represents only the map of the environment and not the search space. A fraction of
the search space is depicted on Figure 8.3(b).

94 CHAPTER 8: A REAL WORLD APPLICATION: A SERVICE ROBOT SEARCHING FOR OBJECTS

One office row

Corridor of size k

r office rows

at(0) at(2)

at(1)

at(3) at(6)

at(4)

at(4),searched(4) at(3),searched(4) at(5),searched(4)

at(6),searched(4)

...

...
...

...

at(4),searched(4),objAt(4)Search(4)

PickUp
at(4),searched(4),hasObj

... ...0 123

4

5

6

state space zoom in

(a) Map

(b) Search Space

Figure 8.3: Example of map and state space of the service robot problem. (a) Example of map
representing a building. The agent is initially at location 0. Gray cells represent offices, the dark
blue cell represents the kitchen and white cells represent the hallways. (b) Visualization of the
initial portion of the search space for the map on (a). Arrows depict actions: arrows with self-loop
represent the action Move, gray arrows represent either Search or PickUp. closed-world assump-
tion, any state variable not presented in (b) is considered false. State 〈at(4),searched(4),hasObj〉
is a goal state.

8.3 EXPERIMENTS 95

Object Location
Bathroom Kitchen Office Printer Room

coffee 0.08 0.72 0.18 0.02
cup 0.42 0.36 0.12 0.10
papers 0.00 0.13 0.70 0.17
pen 0.15 0.23 0.35 0.27
toner 0.05 0.02 0.06 0.87

Table 8.1: Prior probability used in our service robot experiments. These probabilities, obtained
using ObjectEval [Samadi et al., 2012], represent the probability of the object being in a given
location type. The mode of each prior is shown in bold.

In order to show the effects of each parameter in the solution of the problem, consider the
policies πj , for j ∈ {0, . . . , r}, in which the agent explores the first j offices rows, then explores
the kitchen and finally the remaining r − j offices row. For all πj , the exploration stops once the
object is found. For instance, if poffice = 1, then the only policy that explores the kitchen is π0
since no office is explored before the kitchen, and all other policies stop exploring after the first
office is visited.

Figure 8.4 shows the average cost of following the policies πj from the location 0 in the map
from Figure 8.3(a). Each plot of Figure 8.4 varies either k, r, pkitchen or poffice while fixing the
other parameters to k = 10, r = 10, pkitchen = 0.9, poffice = 0.1. Figure 8.4(c) shows that the
average cost of πj , which is exponential in r, since the cost depends on the probability of not
finding the object in a sequence of i offices, i.e., (1−poffice)

i, which is exponential in r. Also, the
optimal policy, i.e., the lowest πj at any point of the plots, is either exploring the kitchen first (π0)
or all the offices first (πr) for this example.

8.3 Experiments

We present five different experiments, each of them for a different object over the same map.
The objects considered in the experiments are: coffee, cup, papers, pen and toner. The prior
distribution of the objects for each location type (Table 8.1) is obtained using ObjectEval [Samadi
et al., 2012], a system that infers this information using the web. Also, we consider that the object
is never in the hallways, i.e., phallway = 0.

For all the experiments, we consider the map depicted in Figure 8.5. The graph representing
this map contains 126 edges and 121 nodes, i.e., locations: 2 bathrooms, 2 kitchens, 59 offices,
1 printer room and 57 segments of hallway. Since there is no location in which any of the
considered objects can be found with probability 1, then, with positive probability, the object

96 CHAPTER 8: A REAL WORLD APPLICATION: A SERVICE ROBOT SEARCHING FOR OBJECTS

1 2 4 6 8 10 12 14 16 18 20

20

30

40

50

60

70

k

A
v
e
ra

g
e
 c

o
s
t
to

 f
in

d
 t
h
e
 o

b
je

c
t

(a) Fixed r, p
k
 and p

o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

p
k

A
v
e
ra

g
e
 c

o
s
t
to

 f
in

d
 t
h
e
 o

b
je

c
t

(b) Fixed k, r and p
o

1 2 4 6 8 10 12 14 16 18 20
20

40

60

80

100

120

r

A
v
e
ra

g
e
 c

o
s
t
to

 f
in

d
 t
h
e
 o

b
je

c
t

(c) Fixed k, p
k
 and p

o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

p
o

A
v
e
ra

g
e
 c

o
s
t
to

 f
in

d
 t
h
e
 o

b
je

c
t

(d) Fixed k, r and p
k

Figure 8.4: Average cost of the policies πj in the map depicted in Figure 8.3(a). The parameters
used are: k = 10, r = 10, pkitchen = 0.9 and poffice = 0.1. In each plot, one of the four parameters
is varied in the x-axis. In all plots, the best policy (bottom curve) is either π0 (explore the kitchen
and then the offices) or πr (explore the offices and then the kitchen). In plot (c), the policy πr
varies as a function of r, the x-axis, and is depicted in gray for clarity.

8.3 EXPERIMENTS 97

Figure 8.5: Floor plan used in our service robot experiments. The embedded graph represents
the map given to the planners. The initial location for the experiments are represented by the
numbers 1,. . . ,10.

might not be found after visiting all locations. This probability is approximately 5 × 10−7,
6× 10−5, 9× 10−32, 2× 10−12 and 3× 10−3 for coffee, cup, papers, pen and toner, respectively.
The simulations in which this low probability event happens are ignored and rerun.

The planners considered in the experiments are FF-Replan (Algorithm 2.2), UCT (Sec-
tion 6.4) and SSiPP (Algorithm 3.2). For the latter two, we use the FF-heuristic hff: for a
given state s, hff(s) equals the number of actions in the plan returned by FF using s as initial
state and the all-outcomes determinization. For UCT, we considered 12 different parametriza-
tions obtained by using the bias parameter c ∈ {1, 2, 4, 8} and the number of samples per decision
w ∈ {10, 100, 1000}. For SSiPP, we used LRTDP as ε-OPTIMAL-SSP-SOLVER and depth-based
short-sighted SSPs for t ∈ {2, 4, 6, · · · , 20}. The experiments were conducted in a 3.07GHz ma-
chine with 4 cores running a 32-bit version of Linux. A cutoff of 10 minutes of CPU time and
3GB of memory was applied to each planner.

98 CHAPTER 8: A REAL WORLD APPLICATION: A SERVICE ROBOT SEARCHING FOR OBJECTS

The methodology for the experiments is as follows: each planner solves the same problem,
i.e., find a giving object from a particular initial location, 100 times. Learning is not allowed, that
is, SSiPP and UCT cannot use the bounds obtained in previous solutions of the same problem
to improve their performance. Table 8.2 presents the results as the average and 95% confidence
interval of number of actions performed in each problem; For ease of presentation, only the best
3 parametrizations of UCT and best 6 parametrizations of SSiPP are shown.

Overall, SSiPP performs better than the other planners in 55 problems out of 60 (approxi-
mately 92%) while the FF-Replan and UCT are the best planner in 3 and 4 problems respec-
tively. Another clear trend is that as t increases for SSiPP, the better is its performance. This is
expected since the behavior of SSiPP approaches the behavior of its underlying ε-optimal plan-
ner, in this case LRTDP, as t increases. However, this improvement in performance is obtained
by increasing the search space and consequently the running time of SSiPP. This trade-off be-
tween performance and computational time is shown in Figure 8.6 where the run time of the
planners is presented.

Looking at specific objects and their priors, we can categorize the objects into: abundant,
uniformly distributed and rare. An example of an abundant object in the experiments is pa-

pers since its prior is 0.7 for office locations and offices represent 48% of the locations. Thus,
the probability of not finding papers is the lowest between all the object considered: approxi-
mately 9 × 10−32. Therefore, finding objects of this category is not a hard task and optimistic
approaches, such as FF-Replan, perform well. This effect is illustrated by the results in third
block of Table 8.2 in which the 95% confidence interval of every planner considerably overlaps.
A similar phenomenon happens with uniformly distributed objects, i.e., objects in which their
prior is close to an uniform distribution, represented in the experiments by pen.

A more challenging problem is posed by rare objects, i.e., objects in which their prior prob-
ability is concentrated in very few locations. In this experiment, coffee, cup and toner can be
seen as rare objects. As expected, FF-Replan performs poorly for rare objects and extra rea-
soning is necessary in order to efficiently explore the state space. For instance, consider finding
the object cup starting at position 7 (Figure 8.6). Both a kitchen and an office are 3 steps away
from position 7. In the all-outcomes determinization used by FF-Replan, the planner will have
access to a deterministic action that always finds cup in the office and in the kitchen, therefore
FF-Replan will randomly break the tie between exploring the kitchen and the neighboring office
from position 7. If the office is explored, then FF-Replan will explore all the other offices in the
hallway between positions 7 and 3 because they will be the closest locations not explored yet.
Since the prior for cup is 0.12 for offices, a better policy is to explore the kitchen (prior 0.36) and
then the two bathrooms (prior 0.42) that are at distance 4 and 5 of the kitchen.

8.3 EXPERIMENTS 99

UCT w = 1000 SSiPP
l0 FF-Replan c = 2 c = 4 c = 8 t = 10 t = 12 t = 14 t = 16 t = 18 t = 20

co
ff

ee

1 17.9 ±3 18.8 ±7 19.9 ±7 23.1 ±9 19.9 ±4 18.5 ±3 19.3 ±4 20.8 ±3 20.7 ±3 17.2 ±3
2 19.4 ±3 18.0 ±7 23.3 ±8 22.2 ±9 14.2 ±3 13.3 ±2 14.1 ±3 13.6 ±3 12.9 ±2 13.0 ±2
3 13.7 ±5 12.3 ±5 13.4 ±8 11.4 ±5 9.7 ±2 10.5 ±3 8.6 ±2 8.1 ±2 8.8 ±2 8.0 ±2
4 18.5 ±4 17.2 ±9 18.1 ±10 16.2 ±4 12.2 ±3 13.1 ±3 12.2 ±3 11.9 ±2 11.3 ±2 12.1 ±2
5 14.5 ±3 14.9 ±4 15.1 ±4 14.7 ±10 14.9 ±2 15.4 ±3 16.7 ±4 17.2 ±3 13.6 ±2 14.2 ±2
6 21.6 ±3 22.7 ±8 24.4 ±10 23.2 ±11 19.1 ±4 21.7 ±4 19.5 ±4 19.1 ±4 18.7 ±2 18.0 ±4
7 21.3 ±4 37.6 ±9 36.3 ±11 34.1 ±12 25.8 ±4 20.5 ±4 21.2 ±4 20.0 ±3 20.8 ±4 20.8 ±3
8 17.3 ±4 27.7 ±9 22.1 ±9 31.5 ±8 13.9 ±3 13.0 ±2 14.5 ±4 14.4 ±3 12.9 ±3 15.0 ±3
9 15.2 ±4 14.0 ±6 17.8 ±7 18.7 ±6 11.6 ±3 10.0 ±3 13.0 ±3 11.5 ±3 10.0 ±3 11.8 ±3
10 20.5 ±5 17.3 ±8 25.9 ±9 23.4 ±7 20.8 ±4 16.4 ±3 15.1 ±3 15.9 ±3 14.1 ±3 14.3 ±3

cu
p

1 28.4 ±5 38.9 ±9 34.7 ±8 31.9 ±8 35.4 ±4 30.8 ±5 29.8 ±6 30.1 ±7 29.3 ±7 27.6 ±5
2 33.5 ±6 31.8 ±9 27.0 ±9 26.6 ±8 30.7 ±6 25.6 ±5 26.4 ±6 27.7 ±6 23.3 ±4 24.0 ±5
3 27.6 ±4 30.8 ±9 33.8 ±10 29.4 ±10 25.5 ±6 26.2 ±7 23.9 ±5 19.5 ±5 17.7 ±3 19.1 ±4
4 34.0 ±6 41.6 ±10 48.6 ±9 35.5 ±9 25.9 ±5 23.0 ±5 23.8 ±5 22.9 ±4 24.5 ±5 24.5 ±5
5 30.5 ±5 35.5 ±8 36.8 ±8 42.3 ±9 29.6 ±6 25.0 ±5 28.4 ±6 25.2 ±4 27.3 ±5 24.3 ±4
6 30.3 ±6 41.5 ±9 37.1 ±9 33.7 ±8 34.3 ±6 28.7 ±5 24.1 ±5 26.2 ±5 20.7 ±3 21.1 ±4
7 28.1 ±5 30.6 ±8 35.8 ±8 33.3 ±8 34.5 ±6 23.8 ±5 22.9 ±4 29.2 ±7 21.6 ±5 23.2 ±6
8 35.4 ±7 20.7 ±9 24.5 ±10 21.9 ±11 24.1 ±6 21.9 ±4 19.9 ±6 20.9 ±5 18.0 ±4 20.8 ±5
9 35.9 ±8 29.3 ±10 25.6 ±8 26.4 ±9 29.3 ±7 19.3 ±6 19.9 ±6 15.9 ±4 15.5 ±5 15.3 ±3
10 31.4 ±6 37.4 ±10 23.7 ±10 27.6 ±8 23.3 ±4 27.6 ±6 22.4 ±4 24.0 ±5 20.9 ±4 20.8 ±4

pa
pe

rs

1 3.3 ±1 3.2 ±1 3.9 ±1 3.9 ±2 3.2 ±0 3.6 ±1 3.2 ±0 3.8 ±1 3.3 ±0 3.6 ±1
2 3.7 ±1 3.7 ±1 3.1 ±1 4.4 ±1 4.0 ±1 3.7 ±1 4.2 ±1 3.5 ±1 3.8 ±1 3.4 ±1
3 4.4 ±1 4.9 ±1 4.4 ±1 4.8 ±1 3.7 ±1 3.5 ±1 3.8 ±1 3.8 ±1 3.5 ±1 3.6 ±1
4 4.4 ±1 4.3 ±1 4.7 ±1 4.9 ±3 3.6 ±1 3.7 ±1 3.5 ±1 3.5 ±1 3.6 ±1 3.7 ±1
5 3.5 ±1 3.4 ±1 3.9 ±1 3.3 ±1 3.7 ±1 3.9 ±1 3.4 ±1 3.9 ±1 3.5 ±1 3.4 ±1
6 3.6 ±1 3.7 ±1 3.9 ±1 3.8 ±1 3.5 ±1 3.5 ±1 3.9 ±1 3.6 ±1 3.4 ±1 3.6 ±1
7 5.9 ±1 6.4 ±1 6.2 ±1 6.0 ±1 6.0 ±1 6.1 ±1 6.0 ±1 5.8 ±1 6.2 ±1 5.8 ±1
8 4.7 ±1 3.9 ±1 3.5 ±1 3.8 ±1 4.4 ±1 3.5 ±1 3.9 ±1 3.6 ±1 3.6 ±1 3.7 ±1
9 4.8 ±1 3.5 ±1 3.7 ±1 4.0 ±1 4.0 ±1 3.5 ±1 3.9 ±1 3.8 ±1 3.8 ±1 3.8 ±1
10 3.4 ±0 3.3 ±1 4.1 ±2 3.5 ±1 3.2 ±1 3.3 ±0 3.5 ±1 3.4 ±1 3.7 ±1 3.5 ±1

pe
n

1 9.4 ±2 9.1 ±3 8.7 ±3 9.3 ±4 9.0 ±2 10.2 ±2 8.7 ±2 8.5 ±2 9.1 ±2 8.4 ±1
2 8.8 ±2 8.9 ±4 9.0 ±2 8.7 ±3 9.8 ±2 9.2 ±2 9.8 ±2 8.5 ±1 8.9 ±2 8.9 ±2
3 8.5 ±1 10.8 ±3 10.8 ±3 12.0 ±3 9.5 ±2 8.2 ±2 9.5 ±2 8.9 ±2 8.7 ±2 7.8 ±1
4 8.2 ±2 9.6 ±3 10.4 ±3 9.1 ±3 9.2 ±2 8.3 ±2 9.0 ±2 8.7 ±3 9.0 ±2 8.5 ±2
5 8.7 ±2 9.6 ±3 8.6 ±2 9.7 ±5 9.6 ±1 9.9 ±2 8.8 ±2 9.0 ±2 9.4 ±2 9.1 ±2
6 11.1 ±3 11.0 ±3 11.7 ±2 10.8 ±3 11.0 ±2 10.7 ±1 10.6 ±2 10.0 ±2 10.1 ±2 10.0 ±2
7 10.9 ±2 11.7 ±3 11.9 ±3 11.4 ±4 11.4 ±2 11.1 ±2 11.2 ±2 11.3 ±2 11.2 ±2 11.5 ±2
8 10.7 ±2 10.4 ±3 10.9 ±2 10.5 ±3 10.1 ±2 11.8 ±2 8.6 ±2 10.8 ±2 10.4 ±2 10.2 ±2
9 11.3 ±2 10.4 ±3 10.6 ±3 10.9 ±4 10.2 ±2 10.9 ±2 10.8 ±2 10.9 ±2 10.0 ±2 10.9 ±2
10 9.7 ±2 9.3 ±2 9.9 ±2 9.7 ±2 9.4 ±2 9.8 ±2 9.5 ±2 9.6 ±2 9.9 ±2 9.5 ±2

to
ne

r

1 54.1 ±9 43.2 ±10 41.9 ±11 41.3 ±11 42.8 ±7 29.5 ±7 27.2 ±5 37.9 ±7 27.1 ±6 27.9 ±6
2 56.8 ±9 41.9 ±10 45.7 ±12 40.3 ±11 41.5 ±5 19.0 ±5 18.3 ±5 18.7 ±5 18.5 ±6 18.3 ±6
3 50.1 ±9 56.6 ±12 55.3 ±11 53.1 ±13 38.5 ±5 33.1 ±6 25.3 ±6 22.4 ±4 23.4 ±9 21.2 ±5
4 61.3 ±9 59.3 ±10 58.0 ±12 42.2 ±11 30.2 ±9 20.7 ±6 20.5 ±6 19.1 ±7 21.3 ±7 19.3 ±7
5 39.3 ±6 38.9 ±10 31.5 ±10 36.5 ±12 30.2 ±7 31.8 ±8 23.9 ±5 23.2 ±6 25.0 ±7 23.6 ±7
6 53.3 ±6 37.5 ±11 29.8 ±7 23.1 ±6 18.6 ±6 19.6 ±4 19.0 ±5 18.9 ±6 18.4 ±4 18.6 ±6
7 45.5 ±7 26.4 ±10 20.7 ±8 21.2 ±7 18.3 ±5 17.9 ±5 18.0 ±6 18.4 ±7 17.6 ±7 17.9 ±5
8 33.9 ±8 21.5 ±10 19.8 ±12 18.7 ±9 23.4 ±10 19.7 ±9 18.8 ±6 16.7 ±8 16.2 ±8 17.1 ±7
9 36.8 ±8 29.9 ±10 25.9 ±10 23.6 ±9 18.5 ±8 17.6 ±6 18.8 ±7 18.3 ±9 16.6 ±6 16.2 ±5
10 54.5 ±8 31.5 ±9 29.5 ±7 27.6 ±10 27.8 ±6 25.1 ±6 23.0 ±6 24.1 ±7 22.6 ±7 22.1 ±6

Table 8.2: Performance of different planners in the service robot experiments. Each cell repre-
sents the average and 95% confidence interval of the number of actions applied to find the given
object starting at location li (Figure 8.5). Bold font shows the best performance planner for the
given problem, i.e., the combinations of objects and initial locations represented by each line of
the table.

100 CHAPTER 8: A REAL WORLD APPLICATION: A SERVICE ROBOT SEARCHING FOR OBJECTS

1 2 3 4 5 6 7 8 9 10
10

4

10
5

10
6

10
7

10
8

10
9

Initial Position

T
im

e
 i
n
 m

ill
is

e
c
o

n
d
s
 (

lo
g

 s
c
a

le
)

Object: Papers

1 2 3 4 5 6 7 8 9 10
10

4

10
5

10
6

10
7

10
8

10
9

Initial Position

T
im

e
 i
n

 m
ill

is
e

c
o

n
d
s
 (

lo
g
 s

c
a

le
)

Object: Toner

FF−Replan UCT c=2 UCT c=4 UCT c=8 SSiPP t=10 SSiPP t=12 SSiPP t=14 SSiPP t=16 SSiPP t=18 SSiPP t=20

Average Planning Time

Figure 8.6: Average run time for the planners to find the objects papers and toner in our service
robot problem. The y-axis is in log-scale and its unit is milliseconds. Error bars omitted for
clarity. The plot for the other objects follows a similar pattern, with SSiPP for t = 12 always
faster than UCT planners for w = 1000.

The improvement in performance over FF-Replan is remarkable for the rare object toner,
that can be found with probability 0.87 in one single location, the printer room. For these prob-
lems, both UCT and SSiPP present better performance than FF-Replan and the average number
of actions applied by SSiPP, for t ≥ 14, is approximately half of the average number of ac-
tions applied by FF-Replan. Moreover, for the toner problems, the best SSiPP parametrization
(i.e., t = 20) solves the problem using from 39.9% to 91.1% of the total actions used by the best
parametrization of UCT (w = 1000 and c = 8).

8.4 SUMMARY 101

8.4 Summary

In this chapter, we presented how to solve the problem of a software or robotic agent moving in
a known environment in order to find an object using SSPs encoded in PPDDL, a standard prob-
abilistic planning language. We empirically compared three different replanning approaches to
solve the proposed problems: determinizations (FF-Replan), sampling (UCT) and short-sighted
planning (SSiPP). The experiments showed that the simpler and optimistic approach used by
FF-Replan suffices if the object can be found in most locations with high probability or nearly
uniform across over all locations. Alternatively, if the probability of finding the object is concen-
trated in few locations, then SSiPP outperforms the other approaches and, for some parametriza-
tions, SSiPP executes on average less than half of the actions executed by FF-Replan to find the
desired object.

It is important to notice that all the planners compared in this chapter are domain-independent
planners. Due to the strong geometric constraints in robotics applications, most real world robots
use domain-dependent planners. This class of planners take advantage of domain specific knowl-
edge to prune the search space and to employ more accurate heuristics. For these reasons, it
is unlikely that SSiPP (or any other domain-independent planner) will be able to outperform
domain-dependent planners in real world robotics problems. Nonetheless, the concept of short-
sighted planning could be easily incorporated to domain-dependent planners to improve their
performance in probabilistic environments, such as the finding object domain presented in this
chapter.

102 CHAPTER 8: A REAL WORLD APPLICATION: A SERVICE ROBOT SEARCHING FOR OBJECTS

Chapter 9

Conclusion

This dissertation sets out to address question,

How to plan for probabilistic environments such that it scales up while offering for-
mal guarantees underlying policy generation?

This final chapter summarizes the contributions we have presented to answer this question. We
also describe some new directions for future work that this thesis raises.

9.1 Contributions

The contributions of this thesis can be grouped into four classes:

1. Short-Sighted Models
We introduced the concept of short-sighted probabilistic planning problems, a special case
of probabilistic planning problems in which the state space is pruned and actions are not
simplified. Three short-sighted models, based on different criteria to prune the state space,
were presented: depth-based short-sighted problems, in which all the states are reachable
using no more than a given number of actions; trajectory-based short-sighted problems,
in which all states are reachable with probability greater or equal than a given threshold;
and greedy short-sighted problems, in which the states have the best trade-off between
probability of being reached and expected cost to reach the goal from them.

2. Short-Sighted Probabilistic Planners
We introduced the Short-Sighted Probabilistic Planner (SSiPP) algorithm that solves prob-
abilistic planning problems by iteratively generating and solving short-sighted subprob-
lems. We also presented three extensions of SSiPP: Labeled-SSiPP, which improves the
convergence of SSiPP to the ε-optimal solution; Parallel Labeled-SSiPP, which solves mul-

103

104 CHAPTER 9: CONCLUSION

tiple short-sighted problems in parallel to speedup the search for the ε-optimal solution;
and SSiPP-FF, which improves the efficiency of SSiPP when a suboptimal solution is ac-
ceptable.

3. Theoretical Analysis
We proved that the optimal solution of short-sighted subproblems are lower bounds for
the original probabilistic planning problem associated with them. Moreover, we showed
that solutions for depth-based short-sighted subproblems can be executed for at least t
steps, where t is a parameter, in the original problem without replanning. We proved that
SSiPP, Labeled-SSiPP and Parallel Labeled-SSiPP are asymptotically optimal and derived
an upper bound on the number of iterations necessary for Labeled-SSiPP and Parallel
Labeled-SSiPP to converge to the ε-optimal solution.

4. Empirical Evaluation
We provided a rich empirical evaluation of the proposed algorithms for two different tasks:
(i) to find an ε-optimal solutions, and (ii) to compute a solution under the International
Probabilistic Planning Competition [Younes et al., 2005, Bonet and Givan, 2007, Bryce
and Buffet, 2008] rules. Several domains were used in our empirical evaluation, including
domains proposed in this thesis and benchmarks from the probabilistic planning commu-
nity. We also empirically showed how a mobile service robot moving in a building in order
to find an object can use short-sighted planning to improve its performance.

9.2 Directions for Future Work

This thesis opens up new interesting directions for further research in probabilistic planning.
Moreover, short-sighted planning is a general concept that can be applied to any planning under
uncertainty model. Next, we enumerate a number of directions for future work.

9.2.1 Automatically Choosing a Short-Sighted Model and its Parameters

Short-sighted SSPs can exploit the underlying structure of the problem through their different
simplifications of the state space and parameters, e.g., the parameter t for depth-based short-
sighted SSPs and ρ for trajectory-based short-sighted SSPs. Our experiments show that the
performance of SSiPP and its extensions can be further improved by optimizing the choice of
short-sighted model used and its parameters for each domain.

A future direction is to derive (heuristic) methods that automatically choose or adapt the
short-sighted model and its parameters for the current SSP being solved. One approach to tackle

9.2 DIRECTIONS FOR FUTURE WORK 105

this problem is to model it as a multi-armed bandit problem in which the combinations of short-
sighted models and their parameters are different arms.

A different approach is to perform automatic domain analysis. This technique has been
successfully applied to automatically elicit knowledge implicitly embedded in the domain, e.g.,
generation of state constraint [Gerevini and Schubert, 1998, Gerevini and Schubert, 2000, Hoff-
mann, 2011] and removal of irrelevant fact and actions [Nebel et al., 1997, Haslum and Jonsson,
2000, Haslum, 2007]. It would be interesting to explore what features can be extracted from
preprocessing the domain that can guide, or constraint, the choice of short-sighted model and its
parameters.

9.2.2 Transfer Learning using Short-Sighted Problems

Transfer learning for probabilistic planning can be seen as the problem of solving an SSP S by
reusing policies for similar SSPs. Formally, let π∗S be an optimal policy for S and define a new
SSP S’ in which only the set of goal states G differs between S and S’. In this case, S’ has
a different optimal value function V ∗S′ that, most likely, yields to optimal policies π∗S′ different
from π∗S. Transfer learning aims to use π∗S to guide the learning of V ∗S′ and thus speed up the
search for π∗S′ [Fernández and Veloso, 2006].

Although π∗S and π∗S′ can be different, the policy for some of the short-sighted SSPs used
during the solution of both S and S′ might still be the same. This is potentially interesting for
problems that share states that must always be visited in both in order to compute their optimal
solutions, e.g., the intermediary doors in the hallway problems (Example 5.1 on page 53).

It would be interesting to explore how the solutions of different short-sighted SSPs are af-
fected when the goal of the original SSP is changed. Another step in this direction is the analysis
of the necessary conditions of SSPs in order to be able to efficiently reuse the optimal policies of
their associated short-sighted SSPs.

9.2.3 Short-Sighted Planning for Imprecise Probabilistic Problems

In many real-world problems, it is not possible to obtain a precise representation of the transition
probabilities in order to use probabilistic planning models. This may occur for many reasons,
including imprecise or conflicting elicitations from experts, insufficient data from which to esti-
mate precise transition models, or non-stationary transition probabilities due to insufficient state
information.

Several models were proposed [Satia and Lave Jr, 1973, Givan et al., 2000, Trevizan et al.,
2007, Delgado et al., 2011] to handle this uncertainty in the transition probabilities and their

106 CHAPTER 9: CONCLUSION

drawback is the increased computational complexity to find an optimal policy. Notice that the
previously proposed problem relaxations for probabilistic planning do not obtain robust solutions
for imprecise probabilistic problems. For instance, solutions obtained using determinizations
completely ignore the extra information regarding the imprecise probabilities of actions and relax
them to deterministic actions.

Alternatively, the extension of short-sighted planning to imprecise probabilistic planning
problems has potential to efficiently compute robust solutions since the structure of actions are
not simplified. Therefore, short-sighted models for imprecise probabilistic problems would be
able to represent both loops in the states and, more importantly, the imprecision in the action rep-
resentation, e.g., a probability interval for each effect. In order to extend short-sighted planning
to imprecise probabilistic problems, two steps are necessary: to define short-sighted imprecise
models, and to extend SSiPP to handle imprecise probabilistic problems.

9.2.4 Short-Sighted Decentralized SSPs with Sparse Interactions

One assumption of SSPs (and MDPs) is that there is only one single agent executing actions and
thus modifying the environment. If more than one agent is modifying the environment, i.e., a
multi-agent problem, then SSPs need to be generalized to encompass the interaction between
agents. One possible approach to model such problems is to assume joint-observability, i.e.,
each agent is aware of the state and actions performed by all other agents, which seldom holds
in practice. If joint-observability is completely ignored, then finding the optimal policy for even
the case where agents share the same cost function is undecidable [Bernstein et al., 2002].

In practice, joint-observability is only required in specific parts of the environment, i.e., the
interaction between agents is sparse [Melo and Veloso, 2009, Melo and Veloso, 2011]. One
example of sparse interactions is two or more service robots navigating in a building (Figure 9.1).
These robots coordinate their actions during navigation only when they need to pass through the
same doors or a narrow hallway. More generally, coordination is required between agents only
in regions of the state space in which: (i) there is a conflict of resource; or (ii) direct interaction
is needed in order to achieve a goal.

One novel approach to solve sparse interaction problems would be to use short-sighted prob-
abilistic planning. The benefits of using short-sighted models for this class of problems is that the
local interactions can be perfectly modeled while future and unlikely interactions can be approx-
imated. Besides extending SSiPP in order to handle multi-agent interactions, this novel approach
also requires the proposal of new short-sighted models to remove and heuristically approximate
unlikely interactions between agents.

9.3 SUMMARY 107

Figure 9.1: Example of sparse-interaction multi-agent planning problem. Two robots, R1 and
R2, have to navigate in the depicted map to reach their goal locations, G1 and G2 respectively.
Coordination between R1 and R2 is only need if and when both try to cross the narrow hallway
at the same time. Figure adapted from [Melo and Veloso, 2009].

9.2.5 Short-Sighted Partially Observable Probabilistic Problems

Partially Observable MDPs (POMDPs) generalize MDPs (Section 2.1) by modeling agents that
have incomplete state information [Sondik, 1971]. A common approach to solve POMDPs is
to convert them to belief MDPs, i.e., an MDP in the belief space, and RTDP (Section 2.3.1)
can be applied to solve the obtained belief MDPs [Bonet and Geffner, 2009]. This adaptation
of RTDP, RTDP-Bel, handles the continuous state space of the belief MDPs by using function
approximations [Bertsekas and Tsitsiklis, 1996], specifically by discretizing the belief space into
a finite grid.

The main drawback of the representation using function approximations is that convergence
is no longer guaranteed. However, in practice, RTDP-Bel performance is comparable with state-
of-the-art POMDP solvers and outperforms them in domains such as RockSample and LifeSur-
vey [Bonet and Geffner, 2009]. An interesting future direction is to use RTDP-Bel as the optimal
solver for SSiPP and apply the proposed short-sighted models in this thesis to model subprob-
lems of belief MDPs. New definitions of short-sighted models that are specific for belief MDPs
might be necessary in order to make this approach feasible.

9.3 Summary

This thesis contributes a number of techniques to effectively solve probabilistic planning prob-
lems. The cornerstone of the presented algorithms is the concept of short-sighted problems, a
novel approach to relax probabilistic planning problems. We proved the relationship between so-
lutions of short-sighted subproblems and the original probabilistic planning problem associated

108 CHAPTER 9: CONCLUSION

with them, as well as, the main properties of our algorithms, e.g., optimality. We demonstrated
the effectives of our presented algorithms and different short-sighted models in a rich empirical
comparison against state-of-the-art probabilistic planners in several domains.

Appendix A

Proof of Lemmas 3.1 and 3.2

Proof of Lemma 3.1. If ŝ ∈ Ss,t ∩ G, then (Bk
s,tV)(ŝ) = (BkV)(ŝ) = 0 for all k ∈ N∗ by the

definitions of B and Bs,t. Otherwise, ŝ ∈ Ss,t \ Gs,t, therefore 1 ≤ k ≤ t. We prove this case by
induction on k:

• If k = 1, then by the definition of short-sighted SSPs (Definition 3.2), we can replace Cs,t
by C in (Bs,tV)(ŝ) as follows:

(Bs,tV)(ŝ) = min
a

∑
s′∈Ss,t\Ga

P (s′|ŝ, a) [Cs,t(ŝ, a, s
′) + V (s′)] +

∑
s′∈Ga

P (s′|ŝ, a)Cs,t(ŝ, a, s
′)

= min
a

∑
s′∈Ss,t\Ga

P (s′|ŝ, a) [C(ŝ, a, s′) + V (s′)]

+
∑
s′∈Ga

P (s′|ŝ, a) [C(ŝ, a, s′) + V (s′)]

= min
a

∑
s′∈Ss,t

P (s′|ŝ, a) [C(ŝ, a, s′) + V (s′)] .

Since minsa∈Ga δ(ŝ, sa) ≥ 1, then {s′ ∈ S|P (s′|ŝ, a) > 0, ∀a ∈ A} ⊆ Ss,t and the
previous sum over Ss,t equals the same sum over S. Therefore (Bs,tV)(ŝ) = (BV)(ŝ).

• Assume, as induction step, that this Lemma holds for k ∈ {1, · · · , c} where c < t. For
k = c+ 1, since minsa∈Ga δ(ŝ, sa) ≥ c+1 > 1, then {s′ ∈ Ga|P (s′|ŝ, a) > 0, ∀a ∈ A} = ∅.
Thus,

(Bs,t(B
cV))(ŝ) = min

a

∑
s′∈Ss,t

P (s′|ŝ, a) [Cs,t(ŝ, a, s
′) + (BcV)(s′)]

= min
a

∑
s′∈Ss,t

P (s′|ŝ, a) [C(ŝ, a, s′) + (BcV)(s′)] .

109

110 CHAPTER A: PROOF OF LEMMAS 3.1 AND 3.2

Since c + 1 ≤ t and ŝ ∈ Ss,t \ Gs,t, then {s′ ∈ S|P (s′|ŝ, a) > 0, ∀a ∈ A} ⊆ Ss,t and we
can expand the previous sum from s′ ∈ Ss,t to s′ ∈ S, i.e.,∑

s′∈Ss,t

P (s′|ŝ, a) [C(ŝ, a, s′) + (BcV)(s′)] =
∑
s′∈S

P (s′|ŝ, a) [C(ŝ, a, s′) + (BcV)(s′)] .

Therefore (Bc+1
s,t V)(ŝ) = (Bs,t(B

cV))(ŝ) = (Bc+1V)(ŝ)

Proof of Lemma 3.2. By the definitions of B and Bs,t, we have the following trivial cases: (i) if
ŝ ∈ Ss,t ∩ G, then (Bk

s,tV)(ŝ) = (BkV)(ŝ) = 0; and (ii) if ŝ ∈ Ga, then (Bk
s,tV)(ŝ) = 0 ≤ (BkV)(ŝ).

Thus, for the rest of this proof, we consider that ŝ ∈ Ss,t \ Gs,t.

Let m denote minsa∈Ga δ(ŝ, sa). If m ≥ k, then (Bk
s,tV)(s) = (BkV)(s) by Lemma 3.1. We

prove the other case, i.e., m > k, by induction on i = k −m:

• If i = 1, then (Bk
s,tV)(s) = (Bs,t(B

k−1
s,t V))(s) = (Bs,t(B

m
s,tV))(s) thus, by Lemma 3.1,

(Bk
s,tV)(s) = (Bs,t(B

mV))(s)

= min
a

∑
s′∈Ss,t\Ga

P (s′|ŝ, a) [C(ŝ, a, s′) + (BmV)(s′)]

+
∑
s′∈Ga

P (s′|ŝ, a) [C(ŝ, a, s′) + V (s′)]

≤ min
a

∑
s′∈Ss,t

P (s′|ŝ, a) [C(ŝ, a, s′) + (BmV)(s′)] ,

where the last derivation is valid because V is monotonic by assumption. Since ŝ ∈ Ss,t\Gs,t,
then {s′ ∈ S|P (s′|ŝ, a) > 0, ∀a ∈ A} ⊆ Ss,t and we can expand the last sum over S.
Therefore, (Bk

s,tV)(s) = (Bs,t(B
mV))(s) ≤ (BkV)(s).

• Assume, as induction step, that it holds for i ∈ {1, . . . , c}. Then, for i = c + 1, i.e.,
k = m+ c+ 1, we have that

(Bk
s,tV)(s) = (Bs,t(B

m+c
s,t (V))(s)

= min
a

∑
s′∈Ss,t\Ga

P (s′|ŝ, a)
[
C(ŝ, a, s′) + (Bm+c

s,t V)(s′)
]

+
∑
s′∈Ga

P (s′|ŝ, a) [C(ŝ, a, s′) + V (s′)] .

111

Since V is monotonic, we have that V (s′) ≤ (Bk+1V)(s′) for all s′ ∈ S. Also, by the
induction assumption, (Bm+c

s,t V)(s′) ≤ (Bm+cV)(s′). Thus,

(Bk
s,tV)(s) ≤ min

a

∑
s′∈Ss,t

P (s′|ŝ, a)
[
C(ŝ, a, s′) + (Bm+cV)(s′)

]
= min

a

∑
s′∈S

P (s′|ŝ, a)
[
C(ŝ, a, s′) + (Bm+cV)(s′)

]
,

because {s′ ∈ S|P (s′|ŝ, a) > 0, ∀a ∈ A} ⊆ Ss,t. Therefore (Bk
s,tV)(s) ≤ (BkV)(s).

112 CHAPTER A: PROOF OF LEMMAS 3.1 AND 3.2

Bibliography

[Archibald et al., 1993] Archibald, T., McKinnon, K., and Thomas, L. (1993). Serial and Paral-
lel Value Iteration Algorithms for Discounted Markov Decision Processes. European Journal
of Operational Research, 67(2):188–203.

[Archibald et al., 1995] Archibald, T., McKinnon, K., and Thomas, L. (1995). Performance
Issues for the Iterative Solution of Markov Decision Processes on Parallel Computers. IN-
FORMS Journal on Computing, 7(3):349–357.

[Barto et al., 1995] Barto, A., Bradtke, S., and Singh, S. (1995). Learning to Act Using Real-
Time Dynamic Programming. Artificial Intelligence, 72(1-2):81–138.

[Bernstein et al., 2002] Bernstein, D., Givan, R., Immerman, N., and Zilberstein, S. (2002). The
Complexity of Decentralized Control of Markov Decision Processes. Mathematics of Opera-
tions Research, pages 819–840.

[Bertsekas, 1995] Bertsekas, D. (1995). Dynamic Programming and Optimal Control. Athena
Scientific.

[Bertsekas and Tsitsiklis, 1991] Bertsekas, D. and Tsitsiklis, J. (1991). An Analysis of Stochas-
tic Shortest Path Problems. Mathematics of Operations Research, 16(3):580–595.

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Pro-
gramming. Athena Scientific.

[Bonet and Geffner, 2003] Bonet, B. and Geffner, H. (2003). Labeled RTDP: Improving the
Convergence of Real-Time Dynamic Programming. In Proc. of the 13th Int. Conf. on Auto-
mated Planning and Scheduling (ICAPS).

[Bonet and Geffner, 2009] Bonet, B. and Geffner, H. (2009). Solving POMDPs: RTDP-Bel Vs.
Point-Based Algorithms. In Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI).

[Bonet and Givan, 2007] Bonet, B. and Givan, R. (2007). 2th International Probabilistic Plan-
ning Competition (IPPC-ICAPS). http://www.ldc.usb.ve/˜bonet/ipc5/ (ac-
cessed on May 12, 2013).

[Boutilier et al., 1999] Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-Theoretic Plan-
ning: Structural Assumptions and Computational Leverage. Journal of Artificial Intelligence
Research, 11:1–94.

[Bryce and Buffet, 2008] Bryce, D. and Buffet, O. (2008). 6th International Planning Competi-
tion: Uncertainty Track. In 3rd Int. Probabilistic Planning Competition (IPPC-ICAPS).

[Burns et al., 2009] Burns, E., Lemons, S., Ruml, W., and Zhou, R. (2009). Suboptimal and

113

114 BIBLIOGRAPHY

Anytime Heuristic Search on Multi-Core Machines. In Proc. of the 19th Int. Conf. on Auto-
mated Planning and Scheduling (ICAPS).

[Burns et al., 2010] Burns, E., Lemons, S., Ruml, W., and Zhou, R. (2010). Best-First Heuristic
Search for Multicore Machines. Journal of Artificial Intelligence Research, 39(1):689–743.

[Coles et al., 2012] Coles, A. J., Coles, A., Garcı́a Olaya, A., Jiménez, S., Linares López, C.,
Sanner, S., and Yoon, S. (2012). A Survey of the Seventh International Planning Competition.
AI Magazine, 33(1):83–88.

[Dai and Goldsmith, 2007] Dai, P. and Goldsmith, J. (2007). Topological Value Iteration Al-
gorithm for Markov Decision Processes. In Proc. of the 20th Int. Joint Conf. on Artificial
Intelligence (IJCAI).

[Dai et al., 2009] Dai, P., Weld, D. S., et al. (2009). Focused Topological Value Iteration. In
Proc. of the 19th Int. Conf. on Automated Planning and Scheduling (ICAPS).

[Dean et al., 1995] Dean, T., Kaelbling, L., Kirman, J., and Nicholson, A. (1995). Planning
Under Time Constraints in Stochastic Domains. Artificial Intelligence, 76(1-2):35–74.

[Delgado et al., 2011] Delgado, K., Sanner, S., and De Barros, L. (2011). Efficient Solutions to
Factored MDPs with Imprecise Transition Probabilities. Artificial Intelligence.

[Fernández and Veloso, 2006] Fernández, F. and Veloso, M. (2006). Probabilistic Policy Reuse
in a Reinforcement Learning Agent. In Proc. of the 5th Int. Joint Conf. on Autonomous Agents
and Multiagent Systems (AAMAS).

[Gerevini and Schubert, 1998] Gerevini, A. and Schubert, L. (1998). Inferring State Constraints
for Domain-Independent Planning. In Proc. of the 15th AAAI Conf. on Artificial Intelligence
(AAAI).

[Gerevini and Schubert, 2000] Gerevini, A. and Schubert, L. K. (2000). Discovering State Con-
straints in DISCOPLAN: Some New Results. In Proc. of the 17th AAAI Conf. on Artificial
Intelligence (AAAI).

[Givan et al., 2000] Givan, R., Leach, S. M., and Dean, T. (2000). Bounded-Parameter Markov
Decision Processes. Artificial Intelligence, 122(1-2):71–109.

[Hansen and Zilberstein, 2001] Hansen, E. and Zilberstein, S. (2001). LAO: A Heuristic Search
Algorithm that Finds Solutions with Loops. Artificial Intelligence, 129(1):35–62.

[Haslum, 2007] Haslum, P. (2007). Reducing Accidental Complexity in Planning Problems. In
Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI), pages 1898–1903.

[Haslum et al., 2007] Haslum, P., Botea, A., Helmert, M., Bonet, B., and Koenig, S. (2007).
Domain-Independent Construction of Pattern Database Heuristics for Cost-Optimal Planning.
In Proc. of the 22th AAAI Conf. on Artificial Intelligence (AAAI).

[Haslum and Jonsson, 2000] Haslum, P. and Jonsson, P. (2000). Planning with Reduced Opera-
tor Sets. In Proc. of the 5th Conf. on Artificial Intelligence Planning Systems (AIPS).

[Helmert, 2006] Helmert, M. (2006). The Fast Downward Planning System. Journal of Artificial
Intelligence Research, 26:191–246.

[Hoffman et al., 2004] Hoffman, J., Porteous, J., and Sebastia, L. (2004). Ordered Landmarks

BIBLIOGRAPHY 115

in Planning. Journal of Artificial Intelligence Research, 22:215–278.

[Hoffmann, 2011] Hoffmann, J. (2011). Analyzing Search Topology Without Running Any
Search: On the Connection Between Causal Graphs and H+. Journal of Artificial Intelligence
Research, 41(2):155–229.

[Hoffmann and Nebel, 2001] Hoffmann, J. and Nebel, B. (2001). The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of Artificial Intelligence Research,
14(1):253–302.

[Howard, 1960] Howard, R. (1960). Dynamic Programming and Markov Processes. MIT Press.

[Keller and Eyerich, 2012] Keller, T. and Eyerich, P. (2012). Probabilistic Planning Based on
UCT. In Proc. of 22nd Int. Joint Conf. on Automated Planning and Scheduling (ICAPS).

[Keyder and Geffner, 2008] Keyder, E. and Geffner, H. (2008). The HMDP Planner for Planning
with Probabilities. In 3rd Int. Probabilistic Planning Competition (IPPC-ICAPS).

[Kishimoto et al., 2009] Kishimoto, A., Fukunaga, A., and Botea, A. (2009). Scalable, Parallel
Best-First Search for Optimal Sequential Planning. In Proc. of the 19th Int. Conf. on Auto-
mated Planning and Scheduling (ICAPS).

[Kishimoto et al., 2010] Kishimoto, A., Fukunaga, A., and Botea, A. (2010). On the Scaling
Behavior of HDA*. In Proc. of the 3rd Symposium on Combinatorial Search (SoCS).

[Kocsis and Szepesvri, 2006] Kocsis, L. and Szepesvri, C. (2006). Bandit Based Monte-Carlo
Planning. In Proc. of the 17th European Conf. on Machine Learning (ECML).

[Kolobov et al., 2009] Kolobov, A., Mausam, and Weld, D. S. (2009). ReTrASE: Integrating
Paradigms for Approximate Probabilistic Planning. In Proc. of the 21st Int. Joint Conf. on
Artificial Intelligence (IJCAI).

[Korf, 1990] Korf, R. E. (1990). Real-Time Heuristic Search. Artificial intelligence, 42(2):189–
211.

[Little and Thiébaux, 2007] Little, I. and Thiébaux, S. (2007). Probabilistic Planning vs Replan-
ning. In Proc. of ICAPS Workshop on IPC: Past, Present and Future.

[McMahan et al., 2005] McMahan, H., Likhachev, M., and Gordon, G. (2005). Bounded Real-
Time Dynamic Programming: RTDP with Monotone Upper Bounds and Performance Guar-
antees. In Proc. of the 22nd Int. Conf. on Machine Learning (ICML).

[Melo and Veloso, 2009] Melo, F. and Veloso, M. (2009). Learning of Coordination: Exploiting
Sparse Interactions in Multiagent Systems. In Proc. of the 8th Int. Joint Conf. on Autonomous
Agents and Multiagent Systems (AAMAS).

[Melo and Veloso, 2011] Melo, F. and Veloso, M. (2011). Decentralized MDPs with Sparse
Interactions. Artificial Intelligence, 175(11):1757–1789.

[Nebel et al., 1997] Nebel, B., Dimopoulos, Y., and Koehler, J. (1997). Ignoring Irrelevant Facts
and Operators in Plan Generation. In Proc. of the 4th European Conf. on Planning (ECP).

[Newell and Simon, 1963] Newell, A. and Simon, H. (1963). GPS: A Program that Simulates
Human Thought. In Feigenbaum, E. and Feldman, J., editors, Computers and Thought, pages
279–298. McGraw-Hill Book Company.

116 BIBLIOGRAPHY

[Nourbakhsh and Genesereth, 1996] Nourbakhsh, I. R. and Genesereth, M. R. (1996). Assump-
tive Planning and Execution: A Simple, Working Robot Architecture. Autonomous Robots,
3(1):49–67.

[Papadimitriou and Tsitsiklis, 1987] Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The Com-
plexity of Markov Decision Processes. Mathematics of Operations Research, 12(3):441–450.

[Pearl, 1985] Pearl, J. (1985). Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, Menlo Park, California.

[Puterman, 1994] Puterman, M. (1994). Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, Inc.

[Rosenthal et al., 2010] Rosenthal, S., Biswas, J., and Veloso, M. (2010). An Effective Personal
Mobile Robot Agent Through Symbiotic Human-Robot Interaction. In Proc. of the 9th Int.
Joint Conf. on Autonomous Agents and Multiagent Systems (AAMAS).

[Russel and Norvig, 2003] Russel, S. J. and Norvig, P. (2003). Artificial Intelligence - A Modern
Approach. Prentice Hall, 2nd edition.

[Samadi et al., 2012] Samadi, M., Kollar, T., and Veloso, M. (2012). Using the Web to Inter-
actively Learn to Find Objects. In Proc. of the 26th AAAI Conf. on Artificial Intelligence
(AAAI).

[Sanner et al., 2009] Sanner, S., Goetschalckx, R., Driessens, K., and Shani, G. (2009).
Bayesian Real-Time Dynamic Programming. In Proc. of the 21st Int. Joint Conf. on Arti-
ficial Intelligence (IJCAI).

[Satia and Lave Jr, 1973] Satia, J. K. and Lave Jr, R. E. (1973). Markovian Decision Processes
with Uncertain Transition Probabilities. Operations Research, 21(3):728–740.

[Smith and Simmons, 2006] Smith, T. and Simmons, R. G. (2006). Focused Real-Time Dy-
namic Programming for MDPs: Squeezing More Out of a Heuristic. In Proc. of the 21st AAAI
Conf. on Artificial Intelligence (AAAI).

[Sondik, 1971] Sondik, E. (1971). The Optimal Control of Partially Observable Markov Deci-
sion Processes. PhD thesis, Stanford University.

[Sulewski et al., 2011] Sulewski, D., Edelkamp, S., and Kissmann, P. (2011). Exploiting the
Computational Power of the Graphics Card: Optimal State Space Planning on the GPU. In
Proc. of the 21st Int. Conf. on Automated Planning and Scheduling (ICAPS).

[Teichteil-Koenigsbuch et al., 2008] Teichteil-Koenigsbuch, F., Infantes, G., and Kuter, U.
(2008). RFF: A Robust, FF-Based MDP Planning Algorithm for Generating Policies with
Low Probability of Failure. 3rd Int. Planning Competition (IPPC-ICAPS).

[Teichteil-Königsbuch et al., 2011] Teichteil-Königsbuch, F., Vidal, V., and Infantes, G. (2011).
Extending Classical Planning Heuristics to Probabilistic Planning with Dead-Ends. In Proc.
of the 26th AAAI Conf. on Artificial Intelligence (AAAI).

[Trevizan et al., 2007] Trevizan, F., Cozman, F., and de Barros, L. (2007). Planning Under Risk
and Knightian Uncertainty. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence
(IJCAI).

BIBLIOGRAPHY 117

[Trevizan and Veloso, 2012a] Trevizan, F. and Veloso, M. (2012a). Short-Sighted Stochastic
Shortest Path Problems. In In Proc. of the 22nd Int. Conf. on Automated Planning and
Scheduling (ICAPS).

[Trevizan and Veloso, 2012b] Trevizan, F. and Veloso, M. (2012b). Trajectory-Based Short-
Sighted Probabilistic Planning. In Advances in Neural Information Processing Systems
(NIPS).

[Trevizan and Veloso, 2013] Trevizan, F. and Veloso, M. (2013). Depth-Based Short-Sighted
Probabilistic Planning. Artificial Intelligence (to appear).

[Veloso and Blythe, 1994] Veloso, M. and Blythe, J. (1994). Linkability: Examining Causal
Link Commitments in Partial-Order Planning. In Proc. of the 2nd Conf. on Artificial Intelli-
gence Planning Systems (AIPS).

[Vidal et al., 2010] Vidal, V., Bordeaux, L., and Hamadi, Y. (2010). Adaptive K-Parallel Best-
First Search: A Simple but Efficient Algorithm for Multi-Core Domain-Independent Planning.
In Proc. of the 3rd Symposium on Combinatorial Search (SoCS).

[Yoon et al., 2007] Yoon, S., Fern, A., and Givan, R. (2007). FF-Replan: A Baseline for Prob-
abilistic Planning. In Proc. of the 17th Int. Conf. on Automated Planning and Scheduling
(ICAPS).

[Yoon et al., 2008] Yoon, S., Fern, A., Givan, R., and Kambhampati, S. (2008). Probabilistic
Planning Via Determinization in Hindsight. In Proc. of the 23rd AAAI Conf. on Artificial
Intelligence (AAAI).

[Yoon et al., 2010] Yoon, S., Ruml, W., Benton, J., and Do, M. B. (2010). Improving Deter-
minization in Hindsight for Online Probabilistic Planning. In Proc. of the 20th Int. Conf. on
Automated Planning and Scheduling (ICAPS).

[Younes and Littman, 2004] Younes, H. and Littman, M. (2004). PPDDL 1.0: An Extension to
PDDL for Expressing Planning Domains with Probabilistic Effects. Technical Report CMU-
CS-04-167, Carnegie Mellon University.

[Younes et al., 2005] Younes, H., Littman, M., Weissman, D., and Asmuth, J. (2005). The 1st
Probabilistic Track of the International Planning Competition. Journal of Artificial Intelli-
gence Research, 24(1):851–887.

[Zhou and Hansen, 2007] Zhou, R. and Hansen, E. (2007). Parallel Structured Duplicate Detec-
tion. In Proc. of the 22nd AAAI Conf. on Artificial Intelligence (AAAI).

[Zhou et al., 2010] Zhou, R., Schmidt, T., Hansen, E., Do, M., and Uckun, S. (2010). Edge
Partitioning in Parallel Structured Duplicate Detection. In Proc. of the 3rd Symposium on
Combinatorial Search (SoCS).

[Zickler and Veloso, 2010] Zickler, S. and Veloso, M. (2010). Variable Level-Of-Detail Motion
Planning in Environments with Poorly Predictable Bodies. In Proc. of the 19th European
Conf. on Artificial Intelligence (ECAI).

Carnegie Mellon University does not discriminate in admission, employment, or administration of its programs
or activities on the basis of race, color, national origin, sex, handicap or disability, age, sexual orientation,
gender identity, religion, creed, ancestry, belief, veteran status, or genetic information. Futhermore,
Carnegie Mellon University does not discriminate and if required not to discriminate in violation of
federal, state, or local laws or executive orders.

Inquiries concerning the application of and compliance with this statement
should be directed to the vice president for campus affairs,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213,
telephone, 412-268-2056

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Thesis Question and Approach
	1.2 Contributions
	1.3 Guide to the Thesis

	2 Background
	2.1 Stochastic Shortest Path Problem
	2.2 Factored Representation
	2.3 Relevant Probabilistic Planning Algorithms
	2.3.1 Real-Time Dynamic Programming
	2.3.2 FF-Replan

	2.4 Summary

	3 Short-Sighted Probabilistic Planning
	3.1 Motivation
	3.2 Short-Sighted Stochastic Shortest Path Problems
	3.2.1 Properties

	3.3 Short-Sighted Probabilistic Planner
	3.3.1 Guarantees

	3.4 The n-Dominoes Line Problem
	3.5 Summary

	4 General Short-Sighted Models
	4.1 Trajectory-Based Short-Sighted SSPs
	4.1.1 Definition
	4.1.2 Triangle Tire World

	4.2 Greedy Short-Sighted SSPs
	4.2.1 Definition
	4.2.2 The n-Binary Tree Problem

	4.3 Extending SSiPP to General Short-Sighted Models
	4.4 Summary

	5 Extending SSiPP
	5.1 Labeled SSiPP
	5.2 Parallel Labeled SSiPP
	5.2.1 Algorithm
	5.2.2 Choosing States for Parallel Labeled SSiPP

	5.3 SSiPP-FF
	5.4 Summary

	6 Related Work
	6.1 Extensions of Value Iteration
	6.2 Real Time Dynamic Programming and Extensions
	6.3 Policy Iteration and Extensions
	6.4 Replanners
	6.5 How our Work Fits

	7 Empirical Evaluation
	7.1 Domains and Problems
	7.1.1 Probabilistic Blocks World
	7.1.2 Zeno Travel
	7.1.3 Triangle Tire World
	7.1.4 Exploding Blocks World

	7.2 Convergence to the Optimal Solution
	7.2.1 Problems from the International Probabilistic Planning Competition
	7.2.2 Race-track problems

	7.3 International Probabilistic Planning Competition
	7.3.1 Methodology
	7.3.2 Choosing the value of t and heuristic for SSiPP-based planners
	7.3.3 Results

	7.4 Summary

	8 A Real World Application: a Service Robot Searching for Objects
	8.1 Motivation
	8.2 Representing the Problem as an SSP
	8.3 Experiments
	8.4 Summary

	9 Conclusion
	9.1 Contributions
	9.2 Directions for Future Work
	9.2.1 Automatically Choosing a Short-Sighted Model and its Parameters
	9.2.2 Transfer Learning using Short-Sighted Problems
	9.2.3 Short-Sighted Planning for Imprecise Probabilistic Problems
	9.2.4 Short-Sighted Decentralized SSPs with Sparse Interactions
	9.2.5 Short-Sighted Partially Observable Probabilistic Problems

	9.3 Summary

	A Proof of Lemmas 3.1 and 3.2
	Bibliography

